SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Physics
1.3 Department	Solid State Physics and Advanced Technologies
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme /	Solid State Physics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline				Physics of Metals and Alloys				
2.2 Course coor	2 Course coordinator Prof. Dr. Viorel Pop							
2.3 Seminar coordinator				Prof. Dr. Viorel Pop				
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	S	
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					77
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					37
Tutorship					3
Evaluations					3
Other activities:					_
3.7 Total individual study hours		140			

3.7 Total individual study hours	140
3.8 Total hours per semester	196
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Solid state Physics, Quantum Physics
4.2. competencies	Valorisation of physical fundamentals, of methods and tools of
	solid state physics and material science for specific applications.
	Use and development of research laboratory equipment and
	industrial laboratory for conducting research experiments.

5. Conditions (if necessary)

5.1. for the course	Classroom equipped with blackboard and projector
---------------------	--

5.2. for the seminar /lab	Access to the research laboratory of Babes-Bolyai University
activities	

6. Specific competencies acquired

competencies	and I won
Professional	

Transversal competencies

- **C1.** Using of advanced knowledge of physics, mathematics and chemistry of solids for study in Sold State Physics and Materials Science. Capacity for analysis and synthesis of physical data, the ability to model complex phenomena.
- **C2.** Capitalization of physical fundamentals, of methods and tools of solid state physics and materials science for specific production activities, expertise and monitoring. Mindset multi-and interdisciplinary.
- **C3.** Planning and conducting experiments to assess the uncertainty and interpretation of the results. Use basic research laboratory equipment and industrial laboratory for conducting research experiments. Planning and implementation independently experiments or experimental investigations and evaluating the uncertainty of the results
- **C4.** Communicating complex scientific ideas, conclusions or results of a scientific project experiments. Ability to obtain and argue scientific results, the ability to produce scientific papers and to relate to the editorial board of scientific journals of the field.
- **CT1.** Fulfil the professional tasks effectively and responsibly with respect for law and ethics under qualified assistance.

Responsible execution of professional duties in terms of autonomy and decision-making based on self-assessment.

- **CT2.** Effective work in multidisciplinary team on different hierarchical levels. Implementation of activities and fulfilling specific teamwork roles on different hierarchical levels, showing initiative and entrepreneurial leadership based on promoting dialogue, cooperation positive attitudes, mutual respect, diversity and multiculturalism and continuous improvement of their activities.
- **CT3.** Effective use of information sources and communication resources and training assistance, both in Romanian and in a foreign language.

Objective self-evaluation of the need for continues training to labour market insertion and the adaptation to dynamic requirements of labour market.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Thorough knowledge of the theoretical and practical aspects in physics of metals
discipline	and alloys and, within it, the proper use of specific language in communicating with
	different professional backgrounds.
7.2 Specific objective of the	Valorisation of physical fundamentals, of methods and tools for study or production
discipline	of metals and alloys.
	Use and development of research and/or industrial equipments to perform research
	experiments.

8. Content

8.1 Course	Teaching methods	Remarks
1. Metallic state, general aspects. Allotropy, allotropic		2 h
transformations		

2. Crystalline structure of the alloys: solid solutions, intermediate phases, mixing of phases.	used the video projector and the	2 h
3. Thermodynamic equilibrium in metallic systems. Solidification of metals and alloys-nucleation.	blackboard.	2 h
4. Thermodynamic equilibrium in metallic systems. Solidification of metals and alloys-growth.		2 h
5. Thermodynamic equilibrium in metallic systems. Free energy of disorder alloys.		2 h
6. Thermodynamic equilibrium in metallic systems. Theory of spinodal decomposition.		2 h
7. Binary phase diagrams. Alloys with total solubility of the constituent elements.		2 h
8. Binary phase diagrams. Alloys with partial solubility of the constituent elements.		4 h
9. Ternary alloys phase diagrams.		2 h
10. Structural defects in metals and alloys. Point defects (vacancies).		2 h
11. Structural defects in metals and alloys. Line defects-dislocations. Space defects.		2 h
12. Diffusion in metals and alloys.		3 h
13. Precipitation in metallic solid solutions.		1 h

Bibliography

- 1. Andersen J. C., Leaver K. D., Rawlings R. D., Alexander J. M., Materials Sciences, Van Nostrand Reinhold (UK) Co. Ltd, 1986.
- 2. Ashcroft N. W., Mermin N. D., Solid State Physics, Holt-Saunders International Editions Tokyo, 1981.
- 3. Bénard J., Michel A., Ohilibert J., Talbot J., Métallurgie générale, Masson Paris 1991 (in French)
- 4. Elliott S. R., The Physics and Chemistry of Solids, John Willey & Sons, 1998
- 5. Ferenc D Tamás, *Phase Equilibria: Ternary Systems*, J. Mater. Educ., Vol. 14, pp1-92, 1992
- 6. Kittel C., Introduction to Solid State Physics Ed. John Wiley & Sons, New York 1996. Introducere în Fizica corpului solid, Ed. tehnică, București 1972.
- 7. Licea I., Fizica Metalelor, Ed. Şt. şi Enciclopedică, Bucureti, 1986.
- 8. Quéré Y. Physiques des materiaux, Edition Ellipses, 1988.
- 9. Pop V., Chicinas I., Proprietati Fizice ale Metalelor si Aliajelor, UBB Cluj 1997.
- 10. Ragone D., Thermodinamics of materials, vol I şi II, John Wiley and Sons, New York 1995

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Chemical bounding	Critical presentation	2 h
	of given subjects.	
2. Binary phase diagrams.	Will be used the	2 h
2 T 1 1'	video projector and	2.1
3. Ternary phase diagrams.	the blackboard	2 h
4. Obtaining of polycrystalline alloys	(seminar).	2 h
4. Comming of polyerystalline alloys	Measurements shall	2 11

5. Obtaining of single crystals alloys	be made on	2 h
	laboratory research	
6. Obtaining of amorphous and nanocrystalline alloys	equipment;	2 h
by rapid quenching and annealing.	subgroups of	
7. Obtaining of amorphous and nanocrystalline alloys	maximum 4 students,	2 h
by mechanical alloying.	under the guidance of	
8. Powder metallurgy – classical sintering.	the professor, will	2 h
	interpret and discuss	
9. Powder metallurgy –microwave sintering and SPS	the results	2 h
10. Heat treatments.	(laboratory).	2 h
10. Heat treatments.		2 11
11. Differential thermal analysis (DTA), Differential		2 h
scanning calorimetry (DSC) and		
Thermogravimetric analysis (TGA)		
12. Study of crystalline structure and microstructure		2 h
by X-ray diffraction.		
13. Metallographic microscopy.		2 h
•		
14. Specific physical properties (magnetic, electrical,		2 h
thermal and optical) of metals and alloys.		

Bibliography

- 1. Andersen J. C., Leaver K. D., Rawlings R. D., Alexander J. M., Materials Sciences, Van Nostrand Reinhold (UK) Co. Ltd, 1986.
- 2. Ashcroft N. W., Mermin N. D., Solid State Physics, Holt-Saunders International Editions Tokyo, 1981.
- 3. Bénard J., Michel A., Ohilibert J., Talbot J., Métallurgie générale, Masson Paris 1991 (in French)
- 4. Elliott S. R., The Physics and Chemistry of Solids, John Willey & Sons, 1998
- 5. Ferenc D Tamás, Phase Equilibria: Ternary Systems, J. Mater. Educ., Vol. 14, pp1-92, 1992
- 6. Flin R A & Trojan P K, Engineering Materials and their Applications, John Wiley and Sons, Inc. New York 1995
- 7. Kittel C., Introduction to Solid State Physics Ed. John Wiley & Sons, New York 1996.
- 8. Licea I., Fizica Metalelor, Ed. St. si Enciclopedică, Bucureti, 1986.
- 9. Quéré Y. Physiques des materiaux, Edition Ellipses, 1988.
- 10. Pop V., Chicinas I., Proprietati Fizice ale Metalelor si Aliajelor, UBB Cluj 1997.
- 11. Pop V., Chicinas I., Fizica Materialelor. Metode experimentale, Presa Universitara Clujeana, 2001.
- 12. Ragone D., Thermodinamics of materials, vol I şi II, John Wiley and Sons, NewYork 1995

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Course content is consistent with what we study in other universities from Romania or abroad being adapted to the peculiarities of research activity at Babes-Bolyai University. To adapt to the requirements of the labour market, the content of these lectures was adjusted to the specific requirements of university education, research institutes and industry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)

10.4 Course	Depth knowledge and	Solving and explaining	75
	understanding of concepts,	complex problems in	
	basic theories and methods	material science more	
	in physics of metals and	precisely in physics of	
	alloys.	metals and alloys.	
	Using advance knowledge		
	of material sciences for		
	explanation and		
	interpretation of new		
	concepts, situations,		
	processes, projects etc.		
	associated to physics of		
	metals and alloys.		
10.5 Seminar/lab activities	Integrated use of	Essay on an imposed theme,	25
	conceptual and	with public presentation.	
	methodological apparatus	Lecture and laboratory work	
	to solve theoretical and	to strengthen experimental	
	practical problems.	skills.	
	Nuanced and meaningful		
	use criteria and assessment		
	methods to make valuable		
	judgments and promote		
10.1751	constructive decisions.		

10.6 Minimum performance standards

- > Design of materials in accordance with quality management principles and elements considering environmental impact and health security.
- > Design the management to produce a new material.
- > Planning and carrying out an experiment to validate a theoretical model in physics of metals and alloys.

Date	Signature of course coordinator	Signature of seminar coordinator
Date of approval	Signature of the head of department	