SYLLABUS

1.1 Higher education	Babes-Bolyai University				
institution					
1.2 Faculty	Physics				
1.3 Department	Department of solid state physics and advanced technologies				
1.4 Field of study	Physics				
1.5 Study cycle	Master of Science				
1.6 Study programme /	MSc./Solid State Physics				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of	ame of the discipline Transport Phenomena in Solid						
2.2 Course co	2.2 Course coordinatorIosif G. Deac, Associate. Prof.Dr.						
2.3 Seminar o	2.3 Seminar coordinator Iosif G. Deac, Associate. Prof.Dr.						
2.4. Year of	MSc. 2	2.5 Semester	r III 2.6. Type of E 2.7 Type of S				S
study		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					45
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					3
Evaluations					4
Other activities:					
3.7 Total individual study hours 126					•

5.7 Total individual study nours	120
3.8 Total hours per semester	182
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Solid State and semiconductor Physics
4.2. competencies	• Identification and proper use of the main laws and principles of
	physics in a given context.

5. Conditions (if necessary)

5.1. for the course	lectures hall with video projector (beamer) and blackboard
5.2. for the seminar /lab	Seminar hall with blackboard
activities	

6. Specific competencies acquired

01.0			petencies acquired
		•	The advanced use of the theoretical and experimental concept of the solid state physics.
Professional	competencies	•	The development of some algorithms to solve problems .
ofess	mpet	•	Data processing and data acquisition by using the advanced computational systems.
Pr	[0]	•	Critical/constructive analysis of the results by using advanced models/theories.
		•	Identification of the advanced continuous formation opportunities and effective
al	cies		exploitation of learning techniques for the own development.
Transversal	competencies	•	Identification of the roles and responsibilities in a team, and the application of effective work and relationship techniques in a team.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course extends the ideas developed in the (Advanced) Solid State Physics course on the basis of the main models and new experimental data. It will develop the basic knowledge underlining the relationship between the crystal structure and the physical properties of solids. This course will provide microscopic pictures of energy transport and energy conversion processes from nanoscale to macroscale.			
7.2 Specific objective of the discipline	 the students will be they to be able to do some advanced and technological research in the field of solid state devices. the students will be able to characterize the solids from electrical, magnetic and thermal properties points of view. the students will also be able to find the correlations between the experimental data and the phenomenon under study. 			

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction. General. Fick's Law. Particle diffusion. Thermal conductivity. Viscosity. Generalized. Forces. Boltzmann Equation. Relaxation time approximation. Classical distribution. Fermi – Dirac distribution. Electrical resistivity. 		4 hours
2. Electronic transport in conductors. Electron-phonon scattering. Impurity scattering. Ziman theory for the electrical resistivity. Band structure effect on the electron transport equation.		2 hours

	Electron-imperfection scattering. Electrical resistivity due to electron- phonon interaction. Bloch-Gruneisen law. Residual resistivity of metals.		2 hours
-	mpurity effect in a metal.		
4. (Conduction electron scattering and the resistance of the magnetic		2 hours
e	elements. Magnetic scattering. Electron transport in ferromagnetic materials.		
I	Electron-magnon scattering. Magnetic impurities in metals. Anderson model.		
ł	Kondo effect.		
5. 1	Thermal conductivity. Thermal conductivity in metals. Wiedemann-Franz	-	2 hours
1	aw and Lorenz number. Electron Scattering Mechanisms Defect Scattering.		
I	Phonon Scattering. Boundary Scattering (Film Thickness, Grain		
I	Boundary).Phonon-phonon scattering. Normal processes. Umklapp processes.		
Ι	Experimental determination of the thermal conductivity.		
6.]	Thermoelectric effects. Peltier Effect. Phonon drag effect. Thermoelectric	-	2 hours
F	ower in metals and semiconductors. Thermoelectric thermometers.		
]	Thermoelectric applications.		
	Electrical conductivity in magnetic fields. Magnetoresistance and Hall effect.		2 hours
(Ordinary magnetoresistance.Kohler' Rule.		
8. I	Hall effect in magnetic metals. Anomalous Hall effect (AHE).		2 hours
ľ	Magnetoresistance in magnetic metals. Anisotropic Magnetoresistance. Spin		
Ċ	lependent electrical transport in ferromagnetic metals.		
9. (Giant magnetoresistance (GMR). Mott Modell. Two currents model. GMR	_	3 hours
i	n granular materials. GMR sensors. Spintronics.		
10	Colossal Magnetoresistance (CMR). Mixed valence MANGANITES.	-	0.1
	Double echange interaction. Charge ordering. Orbital ordering.		2 hours
1	Jouble echange interaction. Charge ordering. Orbital ordering.		
11. 7	Funel magnetoresistance(TMR). Introduction to tunnel effect.TMR-the basic		3 hours
C	of magnetic tunnel junctions. Julliere's model. GMR vs. TMR. TMR in		
٤	granular material		
12. 5	strongly correlated electron systems. What is it? Fermi liquid theory.		2 hours
	Heitler-London approximation. Hubbard model. Electronic structure of 3d		
t	ransition metal oxides. Mott insulator. Multiferoics.		
bliogr	aphy		
1. (C. Kittel, Introduction to Solid State Physics (7ed., Wiley, 1996) N. W. Ashcroft, N. D. Mermin, <i>Solid State Physics</i> , Saunders, 1976.		
	C. Kittel, Thermal Physics (W.H. Freeman and Company New York, 1998).		
	Ch. Enss, S. Hunklinger, Low-Temperature Physics, Springer-Verlag Berlin Heid	elberg 2005	
	J. Mizutani, Introduction to the Electron Theory of Metals, Cambridge Universit	•	

- 6. M. Coldea, Magnetorezistenta, efecte si aplicatii, Presa Universitara Clujana, 2009.
- 7. J.M deTeresa, <u>New magnetic materials and their functions</u>, 2007, Cluj-Napoca, Romania. Summer School
- 8. L. Ranno, Spin dependent tunnel transport and spin polarization, 2003, Brasov. Romania. Summer School
- 9. <u>http://esm.neel.cnrs.fr</u>

Optional bibliography:

- 1. E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257 (2005).
- 2. Ziman, Electrons and Phonons, Oxford Classic Texts in the Physical Sciences
- 3. Simulation in solid state physics: <u>http://pages.physics.cornell.edu/sss/simulationlist.html</u>

8.2 Seminar/Laboratory		Remarks			
 Will consist in preparing and presentation of homework projects. You will be required to make presentations in the class Each student will choose a project consisting from a report (6-12 pages) and a Power Point presentation (30 minutes-10 for discussions). details about the homework projects will be discussed in the first class 	Teaching methods				
Projects proposal (tentative, subject to changes in agreement with					
students preferences)					
1. Electronic transport in low-dimensional systems		The main topics			
2. Colossal magnetoresistance	Problematisation,	and bibliography will be discussed with the students			
3. Magnetic tunnel junctions	demonstration				
4. Electronic transport in graphene		(1 hour each of			
5. Carbon nanotubes		them)			
6. Multiferroic materials					
7. Topological Insulators					
8. Introduction to Oxide Thermoelectrics					
9. Quantum Dots					
10. Spin valves					
11. Spin Transfer Torque					
12. Introduction to heavy-fermions systems					
Bibliography:					
To be discussed with the students for each chosen project					
Books, articles and papers from magazines and journals will b	e made available.				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

national universities. In order to better adapt to the work market requirements, the content of the course was related with the main trends from this field in the regional scientific research, industry and business environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 -correctness and completeness of the knowledge. logical coherence the ability to use the scientific language 	3 hours written exam	45%
	-criteria related to the dutifulness, the interest for individus study.	Active presence in courses	5%
10.5 Seminar/lab activities	the ability to work with the gained knowledge.	Project Power Point presentation	25%
	The corectness and the originality of the homework.	Project report	15%
	Involvment degree	Active presence in seminars	10%
10.6 Minimum performance	ce standards		
		late shall be declared to hav secures not less than 50%	*

Date

Signature of course coordinator

Signature of seminar coordinator

.....

.....

.....

Date of approval

Signature of the head of department

.....

.....