SYLLABUS

1.1 Higher education	Babeş-Bolyai University, Cluj-Napoca	
institution		
1.2 Faculty	of Physics	
1.3 Department	Department of the Condensed Matter Phyiscs and Advanced	
	Technologies	
1.4 Field of study	Applied Engineering Science	
1.5 Study cycle	Master	
1.6 Study programme /	Biomaterials	
Qualification	Diomateriais	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	cipline M	Modern spectroscopic techni			s applied in the study of the advanced		
		ma	materials					
2.2 Course coor	din	ator	Prof. Simion Simon (PhD)/ Assoc. Prof. Lucian Baia (PhD)			n Baia (PhD)		
2.3 Seminar coo	ordi	nator	Prof. Simion Simon (PhD)			c. Prof. Lucia	n Baia (PhD)	
2.4. Year of	1	2.5 Semester	2	2.6. Type of	Е	2.7 Type of	S	
study				evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	3	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	42	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					36
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					44
Tutorship					3
Evaluations					3
Other activities:					-
3.7 Total individual study hours		126			•
3.8 Total hours per semester		196			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• Fundamental knowledge about the atomic and molecular physics, and solid state physics
4.2. competencies	 Adequate use of the fundamental knowledge of atomic and molecular physics, and solid state physics Adequate use of the equipments involved in the advanced materials research

8

5. Conditions (if necessary)

5.1. for the course	Course hall with table, vide projector and adequate software	
	• At least two students should be present	
5.2. for the seminar /lab	• Laboratories possess adequate equipments for performing the	
activities	proposed lab works	

6. Specific competencies acquired

	te competencies acquireu
	C1. Use of the main physics and biomaterials laws and principles that operate at different dimensional
es	scales.
nci	
ete	C4. Individual planning and implementation of the experimental investigations and assessing of the
du	obtained results from the perspective of their uncertainty.
Con	
al c	C5. Ability to communicate complex scientific ideas, conclusions derived from experimental
ÖÜ	investigations or results obtained during a scientific project.
issi	
Professional competencies	C6. Ability to use equipments and experimental techniques in limited or interdisciplinary domains from
Pr	biomaterials field.
	CT1. Achievement of the proposed professional tasks in an efficient and responsible way keeping in mind
es –	the effective laws and deontological rules
'sa	
ver	CT2. Applying the work methods that conduct to efficient results in a multidisciplinary team on diverse
nns	levels.
Transversal competencies	10,0015.
с Г	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Getting the theoretical and experimental knowledge related to the phenomena that govern the principles of the used spectroscopic techniques and about the efficient involvement of these investigation techniques for elucidating the structural particularities of a large variety of materials
7.2 Specific objective of the discipline	 Getting the experimental and theoretical notions useful when spectroscopic techniques are involved Understanding the structure and properties of a large variety of materials from the data analysis recorded by using various complementary spectroscopic techniques

8. Content

8.1 Course	Teaching methods	Remarks
1. The role played by the spectroscopic techniques in		2 hours
elucidating the materials structure. The importance of		
choosing the right spectroscopic method.		
2. The use of IR spectroscopy (ATR-IR, IR-RAS, IR-		4 hours
DRIFT) to the study of advanced materials.		
3. The investigation of the materials structure by		6 hours
means of Raman spectroscopy (micro-Raman,		
resonance Raman, confocal micro-Raman, SERS		
spectroscopy).		

4. UV-vis spectroscopy applied to the study of the	4 hours
materials. The study of optical properties.	
5. Characterization of the surface and interface of	5 hours
materials by various spectroscopic techniques (ATR-	
IR, IR-RAS, confocal micro-Raman spectroscopy,	
XPS, etc.).	
6. Magnetic resonance. General aspects.	3 hours
7. Electronic paramagnetic resonance. The spin	3 hours
Hamiltonian.	
8. Paramagnetic centers in advanced materials.	3 hours
9. Nuclear magnetic resonance. Rotation to the	3 hours
magical angle.	
10. Nuclei with spn $\frac{1}{2}$ in advanced materials.	3 hours
11. Quadrupolar nuclei in advanced materials.	3 hours
12. Mösbauer spectroscopy.	3 hours
Bibliography	

Bibliography

1. J. M. Chalmers, Peter R. Griffiths, (eds.): *Handbook of vibrational spectroscopy*, vol. 1-5, J. Wiley & Sons, Chichester, 2002.

2. L. V. Interrante, M. J. Hampden-Smith, (eds.), Chemistry of advanced materials, John-Wiley & Sons New York, 1998.

3. Elemente de spectroscopie optică moleculară, T Iliescu, Casa Cărții de Știință, Cluj-Napoca, 2003.

4. P. Chakraborty, Metal nanoclusters in glasses as non-linear photonic materials (Review), J. Mater.

Science, **33**, 1998, 2235-2249.

5. I. Ursu, Rezonanța electronică de spin, Ed. Academiei, 1965.

6. Al. Nicula, Ed. Didactică și Pedagogică, 1980.

7. H. Friebolin, Basic one and Two Dimensional NMR Spectroscopy, VCH Publ., 1991.

8. R. Ernst, Principles of Nucleus Magnetic Resonance in One and Two Dimensions, Oxford Sci. Publ., 1990.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Study of advanced materials with crystalline,		7 hours
partial crystalline or amorphous structure by		
means of IR, ATR-IR and Raman		
spectroscopy.		
2. Analysis of optical properties and	Lecture, debate,	7 hours
morphological particularities of some advanced	presentation	
materials by UV-vis spectroscopy.		
3. Investigations of advanced materials with		7 hours
crystalline, partial crystalline or amorphous		
structure by means of ERS.		
4. NMR spectroscopic analyses of advanced		7 hours
materials with crystalline and partial crystalline		
structure.		
Ribliography		

Bibliography

1. L. Baia, Theory and applications of confocal micro-Raman spectroscopy on hybrid polymer coatings and PDMS membranes and spectroscopic studies of doped B₂O₃-Bi₂O₃ glass systems, PhD thesis, Würzburg, 2003.

2. L. Baia, M. Baia, W. Kiefer, J. Popp, S. Simon, Structural and morphological properties of silver nanoparticles-phosphate glass composites, *Chemical Physics*, **327**, (2006), 63-69.

3. Aplicatii ale spectroscopiei vibrationale, T. Iliescu, S. Cinta Pinzaru, D. Maniu, R. Grecu, S. Astilean, Casa Cărții de Știință, Cluj-Napoca, 2002.

4. H. Friebolin, Basic one and Two Dimensional NMR Spectroscopy, VCH Publ., 1991.

5. R. Ernst, Principles of Nucleus Magnetic Resonance in One and Two Dimensions, Oxford Sci. Publ., 1990.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the teaching line is in agreement with other activities taught in other national and international university canters. In order to fit the teaching line with the market requirements its content was synchronized.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	 correctness of the knowledge completeness of 	- final evaluation	45		
	the knowledge - logical coherence of the presentation	- intermediate evaluation	30		
10.5 Seminar/lab activities	 capacity to apply the learned knowledge ability to work with the acquired knowledge 	- oral evaluation	25		
10.6 Minimum performance standards					
To be present at minimum 75% of laboratories					
The passing of the master student is closely related with the knowledge of the following notions: the principle of measuring for the main spectroscopic techniques used in materials investigation					

Date	Signature of course coordinator	Signature of seminar coordinator
22.09.2012	Assoc. Prof. Lucian Baia (PhD)	Assoc. Prof. Lucian Baia (PhD)

Date of approval

Signature of the head of department

Prof. Romulus Tetean (PhD)