SYLLABUS

1.1 Higher education	Babeş-Bolyai University, Cluj-Napoca		
institution			
1.2 Faculty	of Physics		
1.3 Department	Department of the Condensed Matter Phyiscs and Advanced		
	Technologies		
1.4 Field of study	Applied Engineering Science		
1.5 Study cycle	Master		
1.6 Study programme /	Biomaterials		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Pol	yme	rs and composite mat	terials		
2.2 Course coordinatorAssoc. Prof. Lucian Baia (PhD)								
2.3 Seminar coo	ordi	nator	I	Assoc. Prof. Lucian Baia (
2.4. Year of	1	2.5 Semester	r	2	2.6. Type of	Е	2.7 Type of	С
study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours 126					

3.8 Total hours per semester	182
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	• Fundamental knowledge about the atomic and molecular
	physics, and solid state physics
4.2. competencies	• Adequate use of the fundamental knowledge of atomic and
	molecular physics, thermodynamics and solid state physics
	• Adequate use of the equipments involved in the polymers and
	composites research

5. Conditions (if necessary)

5.1. for the course	Course hall with table, video- projector and adequate software		
	• At least two students should be present		
5.2. for the seminar /lab	• Laboratories possess adequate equipments for performing the proposed lab		
activities	works		

6. Specific competencies acquired

1	
	C1. Use of the main physics and biomaterials laws and principles that operate at different dimensional
ies	scales.
nc	
ete	C4 . Individual planning and implementation of the experimental investigations and assessing of the
du	obtained results from the perspective of their uncertainty
uo	obtained results from the perspective of their uncertainty.
al c	
3UG	C5. Ability to communicate complex scientific ideas, conclusions derived from experimental
sic	investigations or results obtained during a scientific project.
fes	
ro	C6. Ability to use equipments and experimental techniques in limited or interdisciplinary domains from
	biomaterials field
	CT1 Ashievement of the groupood geofossional tasks in an officiant and geographila way bearing in mind
	C11. Achievement of the proposed professional tasks in an efficient and responsible way keeping in mind
al ties	the effective laws and deontological rules
irs	
sve ete	CT2. Applying the work methods that conduct to efficient results in a multidisciplinary team on diverse
ans	levels.
l'r: :or	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Getting the theoretical notions and practical abilities related to both morphological and structural characteristics of the polymers as well as their mechanical, electrical and diffusion properties from the applications perspective
7.2 Specific objective of the discipline	 Learning of the theoretical notions related to both morphological and structural characteristics of the polymers as well as their mechanical, electrical and diffusion properties Getting practical abilities regarding the finding of the morphological and structural particularities of the polymers and composite materials Learning about the large variety of applications of polymers and composite materials, including the ability of identifying the material type that could be used for a given application

8. Content

8.1 Course	Teaching methods	Remarks
1. Introductory notions, concepts and evolution in		4 hours
the polymers and composite materials domain.		
2. Structure of polymeric chain. Configuration and		4 hours
conformation. Molecular mass. Dimension of		
polymeric chain. Amorphous phase. Crystalline		
phase. Classification. Liquid crystals polymers.		
3. Mechanical properties of polymers.		4 hours

4. Electrical properties of polymers.		4 hours			
5. Ficks diffusion law. Diffusion coefficient of	f	4 hours			
solute. Free volume in polymers. Free volum	e Lecture,				
theory and molecular theory of the polymer	s presentation				
diffusion. Polymer-solvent interaction. Swellin	g				
thermodynamic model. Flory-Huggins theory.					
6. Dielectric properties of materials. Piezoelectric	2.	4 hours			
ferroelectric, pyroelectric behaviour	•				
Applications.					
7. The future of composite materials. Smar	t	4 hours			
composite materials.					
Bibliography					
1. L. H. Sperling, Introduction to physical poymer scien	nce, third edition. John il	ev & Sons Inc. 2001			
2. D. D. L. Chung, Composite Materials: Science and at	plications-Fuctional ma	terials for modern			
technologies, Springer, London, 2003.	1				
3. M. Alexandre, P. Dubois, Polymer layered silicate na	nocomposites: preparation	on, properties and uses of a			
new class of materials (Review), Mater. Sci. Engineerin	g. 28. 2001. 1-63.	,			
4. P. Chakraborty. Metal nanoclusters in glasses as non-	linear photonic materials	(Review), J. Mater.			
Science 33 1998 2235-2249	inical photoine inaterial				
5 L V Interrante M I Hampden-Smith (eds.) Chemi	stry of advanced materia	als John-Wiley & Sons New			
York 1998					
6 L. A. Pilato M. I. Mihno. Advanced composite Mate	rials Verlag Berlin 199	4			
7 V M Shalaev M Moskovits Nanostructured Materi	als: Clusters, composite	s and thin films Published			
by the Am Chem Society 1997	uis. Clusters, compositer	, and ann mins, i donished			
8 F Purcell Electricity and Magnetism McGraw-Hill (College 1984				
9 V Simon Fizica biomaterialelor Ed Presa Universit	ară Cluieană 2002				
8 2 Seminar / Jaboratory	Teaching methods	Remarks			
1 Structural analysis of composites with glass	Teaching methods	6 hours			
matrix and metallic nanonarticles by means of		0 110013			
IR and Raman spectroscopy					
2 Finding the morphological and physical		8 hours			
2. Finding the morphological and physical	Lecture debate	8 110015			
matellia paparetialas ata) of the dispersed	presentation				
nhesa by means of LIV vis spectroscopy	presentation				
2 Structural analysis of parava composite		6 hours			
5. Structural analyses of polous composite		onours			
hale of vibrational spectroscopic techniques					
A Mambalagical analysis of narrows correction		9 h ours			
4. Morphological analyses of porous composite		8 nours			
materials, untreated and neat-treated, by means					
of sorption measurements and electronic					
Dillis sugges					
Bibliography					
1. P. Chakraborty, Metal nanoclusters in glasses as non-linear photonic materials (Review), J. Mater.					
Science, 33, 1998, 2235-2249.					
2. v. N. Shalaev, N. Moskovits, Nanostructured Materials: Clusters, composites and thin films, Published					
by the Ann. Chem. Society, 1997.					
5. L. Baia, M. Baia, W. Kiefer, J. Popp, S. Simon, Structural and morphological properties of silver					
	tural and morphological	properties of silver			
nanoparticles-phosphate glass composites, Chemical Ph	tural and morphological ysics, 327, (2006), 63-69	properties of silver			
nanoparticles-phosphate glass composites, Chemical Ph 4. J. M. Chalmers, Peter R. Griffiths, (eds.): Handbook	tural and morphological ysics, 327, (2006), 63-69 of vibrational spectrosco	properties of silver). py, vol. 1-5, J. Wiley &			

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the teaching line is in agreement with other activities taught in other national and international university canters. In order to fit the teaching line with the market requirements its content was synchronized.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	- correctness of the knowledge	- final evaluation	45		
	- completeness of				
	- logical coherence of the presentation	- intermediate evaluation	30		
10.5 Seminar/lab activities	 capacity to apply the learned knowledge ability to work with the 	- oral evaluation	25		
	acquired knowledge				
10.6 Minimum performance standards					
> To be present at minimum 75% of laboratories					
> The passing of the master student is closely related to the knowledge of the following notions:					
particularities that define the polymers and composites structure, the most important mechanical and					
electrical properties of these materials and the applications where they are mainly involved.					

Date	Signature of course coordinator	Signature of seminar coordinator
22.09.2012	Assoc. Prof. Lucian Baia (PhD)	Assoc. Prof. Lucian Baia (PhD)

Date of approval

Signature of the head of department

Prof. Romulus Tetean (PhD)