SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Physics
1.3 Department	Physics
1.4 Field of study	Physics
1.5 Study cycle	Master
1.6 Study programme /	Common semester of all master programmes
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Advanced atomic and molecular physics							
2.2 Course coordinator Ladislau Nagy/ Leontin David							
2.3 Seminar co	ordi	nator	Ladislau Nagy/ Leontin David				
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	Fundamental
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	52	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					16
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					4
Evaluations					
Other activities:					

3.7 Total individual study hours	68
3.8 Total hours per semester	120
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•quantum mechanics, basic atomic physics

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Using in-depth knowledge of physics, mathematics, and programming in various multi- and inter-disciplinary fields. Applying atomic physics to understand of complex scientific phenomena. Specific competences Making effective use of in-depth knowledge of physics, mathematics in solving real problems in atomic physics Using advanced information technology and electronic communication in order to analyse, model, simulate, and aggregate data from various branches of physics or other related fields. Solving advanced problems of atomic physics by means of field-related mathematical and computer instruments (analytical, numerical, or statistical tools). · Communicating complex scientific ideas, experiments or outcomes of a scientific project. Transversal competences Accomplishment of professional tasks in an effective and responsible manner, in compliance with the field-specific legislation and code of ethics. Implementation of effective interdisciplinary teamwork methods at various hierarchical levels. Effective use of information sources, as well as communication and professional-assisted training resources in both mother tongue and English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The students should acquire basic knowledge about the quantummechanical treatment of the atoms and molecules.
7.2 Specific objective of the discipline	• They should be able to use the variational and perturbational methods in order to discuss the structure, energy and wavefunctions of the multielectron atoms, the relativistic effects (spin-orbit interaction), and the Zeeman and Stark effects. Students should have the basic knowledge also on group theory, molecular symmetry, group representation, and the application of these in the hybridization of atomic orbitals, the splitting of degenerated atomic levels in crystal fields of different symmetry, electron states in diatomic molecules, and calculation of molecular wavefunctions

8.1 Course	Teaching methods	Remarks
The hydrogen atom. Nonrelativistic and relativistic		
treatment.		
Perturbational treatment of spin-orbit interaction. Fine		
structure. The Lamb shift. Hyperfine structure		
The ball and the Odher and acceptable		
The helium atom. Ortho and parahelium		
Calculating the energy levels and wavefunctions of the		
helium using the variational and perturbational methods.		
The Hartree method.		
THE THE GOS HIGHIOG.		
Multielectron atoms. The Hartree-Fock method.		
The atoms in magnetic field. The normal and anomal		
Zeeman effect. The Paschen-Back effect. Electron Spin		
Resonance		
The atoms in electric field. The Stark effect for the		

hydrogen (linear) and for multielectron atoms (square)	
Elements of group theory. Symmetry operations and	
elements in molecules. Symmetry groups. Equivalen	
atoms	
acomo	
The representation of groups. Character tables. Irreducible	
representations.	
Atomic and molecular wavefunctions as basis of	
irreducible representations. Electron configurations for	
diatomic molecules N ₂ , O ₂ , NO, CO.	
Electronic states and spectral terms for diatomic	
molecules. Selection rules.	
The hybridization of atomic orbitals. σ hybridization	
schemes. The calculation of the coefficients	
The LCAO-MO method for polyatomic molecules. T	
approximation. The Hückel method, self-consistent field	
method (SCF-MO) and Pariser-Parr-Pople (PPP)	
The use of molecular symmetry properties in the	
calculation of molecular orbitals. Projection operators	
Symmetrized wavefunctions.	
Bibliography	

- 1. H. Haken, H.C. Wolf, The Physics of atoms and Quanta, Ed. Springer-Verbag, Berlin, New York, 1996
- 2. B. M. Bransden, C. J. Joachain, Fizica atomului şi moleculei. Ed. Tehnică, Bucureşti, 1998
- 3. T. Creţu, St. Tudorache, Fizica atomului, Ed.Ştiintifică și Enciclopedică, București, 1985
- 4. V. Malinovschi, I.Ştefănescu, Fizică atomică, Ed.Conphys, Rm. Vâlcea, 2001
- 5. C. Cosma, C.Simut, Elemente de fizică atomică. Aplicații, Ed. Univ., Oradea, 2001
- 6. C. J. Ballhausen, H.B. Gray, Molecular Orbital Theory, Ed. W. A. Benjamin Inc., New York, 1965
- 7. O. Cozar, Teoria grupurilor în fizica atomului și moleculei, Ed. U.B.B., Cluj-Napoca, 1986
- 8. A. Hernanz, Metodos teoricos de la quimica fisica, vol. 2, Ed. R. G. Blanca, Madrid, 1991
- 9. F. L. Pilar, Elementary Quantum Chemistry, Ed. McGraw-Hill B.C., New York, 1968
- 10. O. Cozar, V. Grecu, V. Znamirovschi, Rezonanţa electronica de spin pe complecşi metalici, Ed. Acad., Bucureşti, 2001
- 11. L. David, O. Cozar, C. Crăciun, V. Chiş, Rezonanța electronica de spin, Ed. Presa Universitară Clujeană 2001

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The hydrogen atom	Problem solving	
2. Multielectron atoms	Problem solving	
3. The atom in magnetic field	Problem solving	
4.		
5.		
6.		
7.		

Bibliography

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program				
•				
10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation meth	nods 10.3 Share in the grade (%)	
10.4 Course	Knowlidge, understanding and capacity of application of atomic structure (atomic physics).	Oral exam	25	
	Molecular physics	Written exam	50	
10.5 Seminar/lab activities	Homework, activity (atomic physics)	Problem solving	25	
10.6 Minimum performance	e standards			
Date	Signature of course	coordinator Sign	ature of seminar coordinator	
26.09.2017				
Date of approval Signature of the head of department				