SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babes-Bolyai University			
institution				
1.2 Faculty	Physics			
1.3 Department	Physics			
1.4 Field of study	Physics			
1.5 Study cycle	Master			
1.6 Study programme /	Common semester of all master programmes			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline C	Com	putational methods i	n phy	sics	
2.2 Course coordinator Jarai-Szabo Ferenc / Emil Vinteler							
2.3 Seminar coordinator Jarai-Szabo Ferenc / Emil Vinteler							
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	Fundamental
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					4
Evaluations					5
Other activities:					
3.7 Total individual study hours		74			•
3.8 Total hours per semester		125			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	knowledge of basic algorithms, basic programming competences

5

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

competences	 Using in-depth knowledge of physics, mathematics, and programming in various multi- and interdisciplinary fields. Applying computational methods to understand complex scientific phenomena. Independently apply the achieved knowledge to define and formulate research problems in the computational chemistry and physics fields, use information retrieval, data collection, experime and/or computer methods to solve such problems. 	e
Specific co	 Advanced skills in modeling molecular systems, statistical and solid-state physics systems using computers. Ability to critically analyse and evaluate scientific models. 	{
Transversal competences	 Accomplishment of professional tasks in an effective and responsible manner, in compliance w the field-specific legislation and code of ethics. Ability to work in projects, and also to plan and lead projects. Effective use of information sources, as well as communication and professional-assisted traini resources in both mother tongue and English. 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Students should acquire basic knowledge about modern computational modeling techniques and their applications.
7.2 Specific objective of the discipline	 Students will understand theories used in the calculation of the electronic structure of molecules and the approximations on which they are based. They should be familiar with approximations made in understanding the molecular mechanics, semiempirical, ab-initio and DFT methods and their use for the calculation of various molecular properties. Students should have theoretical and practical skills in using random number generators for simulating physics problems. They should have the basic knowledge of the Monte Carlo simulation technique and its application in statistical and solid state physics problems.

8. Content		
8.1 Course	Teaching methods	Remarks
Introduction to Computational Molecular Physics.	oral presentation	
What is computational physics? Computational molecular		
physics applications History of computing in molecular		
physics.		
Molecular Mechanics.	oral presentation,	
Force fields. Energy minimization. Geometry	demonstration	
optimization. Molecular mechanics examples		
Conformation Searching	oral presentation,	
Potential energy surfaces. Systematic methods. Monte	examples	
Carlo methods. Molecular Dynamics methods.	examples	
Conformation searching examples		
Molecular Orbital Methods	oral presentation	
Quantum mechanics background. Hartree-Fock		
equations. Electron correlation. Basis sets		
Additional Quantum-based Methods	aral presentation	
Semi-empirical methods. Density functional theory.	oral presentation,	
	examples	
Molecular Orbital Applications		
Molecular Dynamics Methods	oral presentation,	
Newton's equations. Verlet algorithm. Practical aspects.	demonstration,	
MD examples	examples	
Applications of Computational Molecular Physics	oral presentation,	
	example movies	
Introduction to Monte Carlo methods	oral presentation,	
Computational modeling examples. Basic MC algorithms, problem solving.	example movies	
The random walk	oral presentation,	
Introducing the problem. Analytical solution in 1D.	demonstration	
Generalization in higher dimensions. Monte Carlo		
approach.		
Random number generators	oral presentation,	
Random number generation. Pseudo random number	method demonstration	
generators. RNG tests. Basic transformations.		
Monte Carlo integration methods	oral presentation,	
The hit or miss method and average sampling methods.	demonstration,	
Calculating the PI value by MC simulations. The error of	examples	
the MC integration. Importance sampling. The Metropolis		
algorithm.		
Theoretical background of of the MC algorithms	oral presentation,	
Basic MC approaches. The detailed balance. The	demonstration,	
Metropolis random walk algorithm.	,	
Monte Carlo methods in statistical physics	oral presentation,	
The Daemon algorithm for an ideal gas. Averages in	example codes and	
statistical physics. MC sampling approaches. Metroplis		
Monte Carlo algorithm with Boltzmann statistics.	movies	
Interdisciplinary applications.	oral presentation,	
	example movies	

Bibliography

1. Christopher J. Cramer, Essentials of Computational Chemistry, 2nd Ed., John Wiley & Sons, Hoboken, NJ, 2004.

2. H. Gould and J. Tobochnik Introduction to Computer Simulation Methods and applications in physics (Addison-Wesley, 1996)

3. Werner Krauth. Introduction to Monte Carlo algorithms.. summer school in Beg-Rohu (France) and Budapest1996, 2006, https://cel.archives-ouvertes.fr/cel-00092936

4. Werner Krauth, Four lectures on computational statistical physics, https://arxiv.org/abs/0901.2496v1

8.2 Laboratory	Teaching methods	Remarks
Molecular geometry specification; Cartezian coordinates;	Avogadro program	
Z-matrix formalism; Molecular mechanics		
Conformal searching; Tinker program; HF method, basis	GaussView/Gaussian	
sets; DFT method, semiempirical methods	program	
Molecular dynamics; Applications of Computational	Tinker and VMD	
Molecular Physics	program	
Computer simulation approaches of basic interdisciplinary	c/c++ programming	
problems		
Monte Carlo simulation of the random walk.	c/c++ programming,	
	gnuplot	
Monte Carlo calculation of the PI value, Simple Monte	c/c++ programming,	
Carlo integration methods	gnuplot	
Metropolis Monte Carlo simulation of the Ising model	c/c++ programming,	
	gnuplot	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with courses of similar content from other foreign academic centers. To adapt to the demands of the labor market, the content of the discipline has been harmonized with the requirements of the pre-university education, research institutes and the business environment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge, understanding	Written exam	30
	and capacity of application		
	of the computational		
	molecular physics		
	Knowledge, understanding	Written exam	30
	and capacity of application		
	of the Monte Carlo methods		
10.5 Seminar/lab activities	Homework, activity, project	Problem solving, project	20
	(computational molecular	elaboration	
	physics)		
	Homework, activity, project	Problem solving, project	20
	(Monte Carlo simulation	elaboration	
	methods)		
10.6 Minimum performance	ce standards	•	
Iomework assignments will	come from textbook problems	, and will be turned in every 3	weeks. Completing and
inderstanding the homewoi	rk assignments is essential to pe	erforming well on the exams a	nd mastering this
challenging subject.			
/			

Date	Signature of course coordinator	Signature of laboratory coordinator
Date of approval	Signatur	re of the head of department