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Abstract

Stationary collective modes in a ring of identical and locally coupled Kuramoto-type rotators are investigated. We
show that the final stationary collective mode is predictable after a ts time in the dynamics. A simple method is given
for determining this ts time-moment. For randomly chosen initial conditions we study numerically the scaling of the
mean ts value as a function of system size and coupling parameter between the rotators.

1 Introduction

Collective behavior in ensembles of interacting oscillators is
one of the oldest problems in the field of dynamical sys-
tems and statistical physics [1, 2]. Interestingly however,
this field is still active, raising new problems [3], revealing
further surprises [4] and offering applications and modeling
tools for many other areas of science and engineering [5].

Synchronization of non-identical and coupled oscillators
is an intriguing fact observed in many real systems. The
Kuramoto model [6] is probably the most widely studied
system for modeling such synchronization phenomena. For
globally coupled rotators it exhibits an order-disorder tran-
sition, which is useful to explain emerging synchronization
in physical, social or biological systems [7]. By varying the
characteristics of the interactions acting between the rota-
tors, many variants of the original model were studied ana-
lytically and numerically. It was found that the topology of
the interaction determines the nature of the emerging col-
lective behavior. In such sense the Kuramoto model was
considered both on regular and random graphs [8, 9, 10] us-
ing interactions between neighbors of different order [11, 12].
The model was generalized also by considering a mixture
of attractive and repulsive couplings [13]. In general, for
locally coupled nonidentical oscillators it was found a rich
variety of collective behavior: frequency locking, phase syn-
chronization, partial synchronization or incoherence. Time-
delay in the interactions between the active neighbors in-
troduces an extra complexity in the Kuramoto model by
drastically increasing its dimensionality [14, 15, 7, 3]. It
yields also new surprises in large oscillator ensembles, by
generating novel, long lived transient states where some of
the oscillators synchronized while the others remained com-
pletely disorganized. Such states were named as ”chimera”
states, and they were observed in many different coupling
topologies [16, 3, 4]. Nowadays it is believed that the con-
dition to get such ”chimera” states in interacting oscillator
ensembles is to have some sort of non-uniformity in the cou-
pling strength, in the oscillators natural frequencies or in the

time-delay. Here we do not consider inhomogenities or time
delay so chimera-like states are not expected to appear.

The system investigated by us consist of N classical Ku-
ramoto oscillators in a ring-like topology, with identical in-
trinsic frequencies ω0, each oscillator being coupled to its
nearest neighbors with coupling strength K. The dynamics
of the system is given by the coupled first order differential
equation system:

θ̇i = ω0 +K[sin(θi−1 − θi) + sin(θi+1 − θi)] , (1)

with θi = θi(t) being the time-dependent phase of the i-
th oscillator, i = 1, N , together with the periodic bound-
ary conditions θN+1 = θ1 and θ0 = θN . The symmetry
of the system allows many dynamically stationary states
(different types of collective behavior) to appear [12, 17].
Such states are generalized synchronization states in form
of self-closing traveling waves with a fixed winding number,
m, all the oscillators having the same ω0 frequency. The
simplest and most probable state is the classical synchrony
(m = 0) where all rotators move in phase. The other sta-
tionary states (m = ±1,±2...) are characterized by a locked
phase-difference between the neighbors. Our aim here is to
estimate the average time necessary for selecting the final
state starting from randomly chosen initial phases. By the
selection time we mean the shortest time after which we can
predict the final stationary state of the system.

In our numerical study we fix the T0 = 2π/ω0 = π natu-
ral period for the oscillators (defining by this the time-unit),
and study the influence of the remaining N and K parame-
ters on the selection time.

2 Overview of the known results

Here we give an overview in an original approach of the
known results for the stationary states and introduce also
some basic concepts and notations that are used in the fol-
lowing sections.
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Stationary states

For convenience reasons we switch to a reference frame ro-
tating with the natural frequencies of the oscillators:

ui(t) = θi(t)− ω0t. (2)

The equation of motion in the rotating frame will be:

u̇i = K[sin(ui−1 − ui) + sin(ui+1 − ui)] =

= F (ui−1, ui, ui+1)
(3)

In this frame equation (3) is a gradient system having the
following potential function [12]:

V = −K
2

N∑
j=1

(cos(uj−1 − ui) + cos(uj+1 − ui)) . (4)

Equation (3) is now equivalent to u̇i = −∂V/∂ui. Being a
gradient system means that the stationary states are always
fixpoints while limit cycles or any kind of different attractors
are not allowed [?]. These stationary states correspond to
local minima, maxima or saddle points of V .

Fixpoints require u̇i = 0, hence:

K[sin(ui−1 − ui) + sin(ui+1 − ui)] = 0. (5)

Converting this sum to a product will yield:

K sin

(
ui+1 − 2ui + ui−1

2

)
cos

(
ui+1 − ui−1

2

)
= 0. (6)

If either of the two trigonometric functios evaluates to 0 we
have stationarity. Thus the two conditions are:

ui+1 − 2ui + ui−1 = 2kiπ, ki ∈ Z, (7)

and

ui+1 − ui−1 = (2qi + 1)π, qi ∈ Z. (8)

The above conditions can be satisfied for the whole system
in the following manners:

(a) condition (7) is fulfilled for all i indeces

(b) condition (8) is true all over the system.

(c) for some i values condition (7) holds, while for the
other i values condition (8) is true

While cases (a) and (b) conserve the symmetry of the sys-
tem, case (c) will violate it, corresponding to a nontrivial
symmetry breaking.

To represent the state of the system on a unit circle it is
convenient to use a new phase parameter: φi (0 ≤ φi < 2π):

φi = ui mod 2π . (9)

Taking into account that the asymptotic solutions are char-
acterized with fixed ui values, these are phase-locked states.
Therefore the relative positions of oscillators i and i− 1 on
the unit circle has to be characterized with a parameter ∆φi,
named hereafter as phase shift between oscillators i and i−1,
which takes values between −π and π as it is illustrated in

Fig. 1. In order to achieve this, the ∆φi parameter has to
be defined as:

∆φi = φi − φi−1 for −π ≤ φi − φi−1 < π

∆φi = φi − φi−1 − 2π for π ≤ φi − φi−1 < 2π

∆φi = φi − φi−1 + 2π for −2π < φi − φi−1 < −π,(10)

which can be written in a compact form by using the floor
function (f(x) = b(x)c):

∆φi = (φi − φi−1)− 2π

⌊
φi − φi−1 + π

2π

⌋
. (11)
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Figure 1: (color online) Illustration of the ∆φi phase differences,
see also Eqs. (10)

Let us consider now ∆N =
∑N
i=1 ∆φi. Using Eq. (11),

we can write

∆N =

N∑
i=1

(φi − φi−1)− 2π

N∑
i=1

⌊
φi − φi−1 + π

2π

⌋
(12)

In our ring topology φ0 = φN , so the first sum in Eq. (12) is
zero. Since the terms in the second sum are all 0 or ±1, it
results that the second sum should be an integer, m ∈ Z. As
a consequence the sum of the phase shifts satisfy the relation
(see also [17]):

∆N = 2πm, (13)

where negative values of m are also allowed. This relation
has nothing to do with the dynamical equations of the sys-
tem, it is solely a consequence of the imposed topology.

Considering case (a) for the fix point condition, we
rewrite equations (7) using the φi variables:

φi+1 − 2φi + φi−1 = 2kiπ, ki ∈ Z. (14)

Regrouping the multiples of 2π one can write the above con-
dition also in terms of the phase shifts:

∆φi+1 −∆φi = 2liπ, li ∈ Z (15)

Since ∆φi ∈ [−π, π) this condition is fulfilled only for
li = l = 0. Hence:

∆φi+1 = ∆φi. (16)

Consequently, in these stationary states ∆φi = ∆φ, constant
for all oscillator pairs. This leads to the result:

∆φ =
∆N

N
= 2

m

N
π . (17)
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Due to the fact that the phase shift satisfies −π ≤ ∆φ < π,
we get that −N/2 ≤ m < N/2, with m ∈ Z. Stationary
states stemming from equation (18) are defined thus by the
m number, referred from now on as the state index or wind-
ing number. Synchrony in the classical sense corresponds to
the 0 index, the other states being indexed from −N/2 up
to N/2− 1. The existence of these stationary states is well-
known in the literature [18, 12, 17], however other authors
use different arguments to arrive at this result.

The other branch of stationary states given by case (b) is
obtained by satisfying the condition in equations (8). With
the same reasoning as in case (a) one arrives to:

∆φi+1 + ∆φi = (2pi + 1)π, pi ∈ Z (18)

Taking into account that ∆φi ∈ [−π, π) the two phase shifts
can only add up to ±π which is equivalent to pi ∈ {−1, 0}.
Generally the pi parameter may be different for the pairs of
rotators, however it can be shown that it is constant over
the whole system. In order to realise this, let us assume that
the pi value changes for two consecutive pairs:

∆φi+2 + ∆φi+1 = ±π
∆φi+1 + ∆φi = ∓π. (19)

Subtracting the two equations we get:

∆φi+2 −∆φi = ±2π. (20)

This condition cannot be fulfilled since −π ≤ ∆φi < π so
the difference between two phase shifts is always greater
than −2π and smaller than 2π, therefore pi = pi+1 = p
(pi ∈ {−1, 0}) for all pairs.

To gain some more information about this type of states
we sum up all the equations in (19):

N∑
i=1

∆φi+1 + ∆φi =

N∑
i=1

(2p+ 1)π. (21)

Invoking the periodic boundary condition we can write:

2

N∑
i=1

∆φi = 2 · 2mπ = N(2p+ 1)π. (22)

Finally by using p = ±1 we determine the possible values of
the m winding number:

m = ±N
4
. (23)

These kind of states are only possible if N is divisible by
4 and their number is infinite since there are infinite phase
shifts for which the ∆φi+1 = ±π −∆φi condition holds.

The symmetry violated case (c) is a combination of con-
ditions (18) some i values and (19) with pi ∈ {−1, 0}, for
the other i indices. Since this is a highly unusual case, we
present an example of such a nontrivial configuration for
N = 4 oscillators in Fig. ??.

One can immediately realise that there are many possi-
bilities to fulfil case (c). Following a similar argument as the
one used in case (b) one can show that if there are triplet of
oscillators satisfying condition (19) all of them must have the
same pi = p (pi ∈ {−1, 0}) value. As a consequence of these
all ∆φi values are either a constant ∆φ or (2p+ 1)π −∆φ.

Assuming that there are n number of ∆φi = ∆φ phase shifts
and consequently N−n phase shift with (2p+1)π−∆φ value,
the imposed boundary condition (13) leads to

N∑
i=1

∆φi = n∆φ+ (N − n) [(2p+ 1)π −∆φ] = 2mπ, (24)

where −N/2 ≤ m < N/2 with m ∈ Z.

Stability of the stationary states

In case (a) when condition (7) is fulfilled for all i indeces
using the condition in (17) we identified the possible station-
ary states characterised by equal phase-shifts ∆φ = 2mπ/N
with −N/2 ≤ m < N/2. We analyze now their stability. For
this purpose we use the standard linearization near the equi-
librium point . The Jacobian of the system, evaluated at the
equilibrium solution u∗ = (u∗1, . . . , u

∗
i , . . . ) is constructed as

follows:

∂F (ui−1, ui, ui+1)

∂uj

∣∣∣∣
u∗

= K
[

cos(u∗i−1 − u∗i )δi−1,j−

−
(

cos(u∗i−1 − u∗i ) + cos(u∗i+1 − u∗i )
)
δi,j+

+ cos(u∗i+1 − u∗i )δi+1,j

]
.

(25)

In equilibrium u∗i − u∗i−1 = ∆φ. Hence, we can write the
Jacobian explicitely in the form of a circulant matrix:

∂F

∂uj

∣∣∣∣
u∗

= K cos ∆φ



−2 1 0 . . . 0 0 1
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
1 0 0 . . . 0 1 −2


(26)

The eigenvalues of this matrix can be written in an explicit
form [19]:

λj = −2K cos ∆φ

(
1− cos

2πj

N

)
, j = 0, N − 1 (27)

The expression in the bracket is non-negative, so in order to
have a stable equilibrium we need cos ∆φ > 0, which implies:

−π
2
< ∆φ <

π

2
. (28)

This result can be formulated in terms of the state index:

−N
4
< m <

N

4
. (29)

This is the same results as the one given in [17].
Following a similar argument in case (b) (condition (8)

is true all over the system) one can show that the eigenval-
ues of the Jacobian are all zero, therefore the fixpoints have
neutral stability. Details are given in the Appendix.

Case (c) is more complicated and we have exact analyt-
ical results only for some special choices of the parameters.
These results indicate that the fix points are unstable. For
more details please see the Appendix. For other situations
our computer experiments supports the same conclusion.

In Conclusion....
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Computer experiments

Numerical integration of the system of equations (1) start-
ing from uniformly distributed initial θi values will reveal
only the stable stationary states. It worth noting that a
uniform distribution of the states in the θ space will lead to
a uniform distribution in the ∆φ space as well.

A series of simulations performed on systems with sizes
ranging from N = 4 to N = 100 confirms the results pre-
sented in equations (13) and (29). In agreement with the
simulation results presented in [12] we also find that for
−N4 < m < N

4 the probability distribution of the stable
states can be described with a Gaussian envelope curve
(Fig. 2). As it is visible in the inset of Fig. 2, the stan-
dard deviation of the probability distribution scales linearly
with the square-root of the system size, a result emphasized
already in [12]. Our computer experiments also proved that
the distribution does not change if one changes the coupling
strength K.

-6 -4 -2 0 2 4 6
m

0

0.1

0.2

0.3

0.4

0.5

P(m)

N=20
N=60
N=100
σ

20
=0.816

σ
60

=1.356

σ
100

=1.7433 6 9

N
1/2

0.8

1.6

σ

Figure 2: (color online) Probability distribution of the final
states for different oscillator numbers N , and the normalized
Gaussian probability density envelope curve fitting the discrete
points. The inset shows the scaling of the standard deviation,
σ ∝

√
N . The distributions are obtained over 5000 runs for the

K = 1.5, ω0 = 2 parameters.

3 Dynamics of the system

Let us consider first the evolution of the system in the N di-
mensional ∆φ-space. Since ∆φi is defined for−π ≤ ∆φi < π
the allowed phase space is confined in a hypercube centered
in the origin of the N -dimensional space (for the 3D case
see Fig. 3). In the stationary states all phase shifts are
equal, so the attractors lie on the main diagonal of the hy-
percube (large black points in Fig. 3) . We have shown that
these states are discrete, thus the attractors represent dis-
tinct points on this line. In Section 2, Eq. (13), we have also
proved that at each time moment of the dynamics:

N∑
i=1

∆φi = 2mπ (30)

with −N/2 ≤ m < N/2 and m ∈ Z. Equation (30) can be
interpreted as the equation of a plane in the N -dimensional

space, determined by the phase shifts in the system. The N -
dimensional characteristic point of the system can only exist
on the planes defined by various m values in (30). These
planes are parallel to each other, and as m increases in ab-
solute value the area of the cross-sections of the planes and
the hypercube gets smaller. The 3D case is illustrated in
in Fig. 3, where the larger central plane is for m = 0, and
the the two smaller planes are for m = ±1. During the
evolution of the system the characteristic point is moving
on these planes. Jumps between the planes are also pos-
sible when the configuration of the phase shifts changes in
a way that the winding number defined by the sums (see
Eqs. (12) and (13)) is altered by +1 or -1. Sometimes this
occurs when the characteristic point of the system reaches
the boundary of a plane (i. e. phase shift between two oscil-
lators crosses the π or -π value). This representation gives
a first qualitative image for the dynamics of the oscillator
ensemble.

Figure 3: (color online) The planes defined by condition (3) for
a system of N = 3 rotators. Black spheres indicate the allowed
stationary states of the system. The central large plane is for
m = 0, while the other two planes are for the m = ±1 states.

For N > 3 the actual trajectories cannot be easily visu-
alized. In order to get some useful information on the dy-
namics of the system one option is to plot the phase-shifts
between each nearest-neighbor oscillator ∆φi as function of
time. A characteristic time-evolution is sketched in Fig. 4.
One can observe on the plotted dynamics the jumps that oc-
cur at the border of the planes (either jumping on an other
edge of the plane, or jumps to another plane). From such
a representation is not evident the time-moment at which
one is already able to predict the final state. Our aim in
the following sections is to give a useful numerical method
that allows such a prediction. In Fig. 4 we sketched by the
red line the time moment at which our prediction works (see
Section 5).
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Figure 4: (color online) Characteristic time evolution for
the phase-differences ∆φi between neighboring oscillators. The
dashed red line indicates the time moment for the selection of
the final state for N = 30, K = 0.75 (see the next section). Note
the logarithmic time-scale.

4 Compact basin of attractions
around the stationary state

One can also investigate the size of the compact basin of at-
traction around a stationary state m. Starting from inside
this domain the dynamics will converge to the stationary
state m. Using the picture introduced in the previous sec-
tion for these compact basins of attraction, the dynamics
is confined to the plane corresponding to mode m, never
jumping actually to other planes. In such case the final
state is predictable right from the starting moment. In or-
der to estimate the a size of these domains, one considers the
stationary states with fixed m value: θ∗i = i · 2mπ/N . We
perturb these states, θi = θ∗i + ξ, with uniformly distributed
ξ ∈ [−ε, ε) random variables (ε ∈ [0, π]) and determine the
largest value εc so that the dynamics starting from the ini-
tial state θi will always converge to state m. Results for the
εc values computed for two different system sizes, N = 24
and N = 36, are plotted in Fig. 5.

The probability that a randomly selected initial state
from the whole N -dimensional hypercube of volume (2π)N

is inside this compact attraction basin, where the final state
is predictable right from the beginning, is hence:

Pcomp ≤
(

2εc
2π

)N
≈
(

1.7− 2mπ
N

π

)N
. (31)

The approach given for Pcomp (last part of Eq. (31)), results
from the fact that εc decreases linearly as a function of ∆φ,
independently of the system size. This is proven by the re-
sults plotted in Fig. 5. Even for a relatively small system
size, e. g. N = 8, the probability that a randomly selected
initial state is in the largest compact basin of attraction
around the m = 0 is: Pcomp < 0.01.

0 π/8 2π/8 3π/8 4π/8
∆φ

0

π/8

2π/8

3π/8

4π/8

5π8

ε
c

ε
c
(∆φ), N=24

ε
c
(∆φ), N=36

Figure 5: (color online) The radius εc of the compact attrac-
tion basins around different stationary states for two different
system size, N . The results are plotted as a function of the
phase difference in the stationary states, since in such case the
trends for different N values overlap. For the definition of εc
see the text. The values of εc are estimated on an ensemble of
1500 initial states, obtained for K = 10 and fitted by the line
εc = 1.7195− 1.0501∆φ.

5 Predicting the final stationary
state

It is a natural question now, how and when we are able to
predict the final stationary state, if the system is initially
out of the compact attractor region around the stationary
state. Similarly to the known Kuramoto order parameter r0
(for m = 0), one can define a generalized order parameter
rm ∈ [0, 1] for each |m| > 0 stationary state. This param-
eter will give a useful information on how well the system
approached the given stationary state with index m:

rm(t)eiψm(t) =
1

N

N∑
j=1

ei[θj(t)−(j−1) 2mπ
N ]. (32)

Naturally for rm = 1, the system is in the stationary state
characterized by the index m. The smaller rm is, the fur-
ther the system is from this stationary state. This gen-
eralized order parameter is a useful tool for following the
time-evolution of the system.

Characteristic results for the time evolution of the rm
values are shown in Fig. 6. One can split the plotted evo-
lution curves in two regions, as it is done by the vertical
dashed line. In the first stage, t < ts, several order param-
eters are increasing, while in the second stage, t ≥ ts, only
the rm corresponding to the selected state keeps increasing.
We have proved on thousands of samples that once such a
situation is reached, for t > ts, it remains stable (i. e. this
order parameter will continue to growth and the others will
converge to zero). Such a turning point will always arise,
hence by detecting it one can already predict the final state
of the system. It is interesting to note that the appearance of
stage two is possible also when the growing order parameter
is relatively small, and one would not even expect that the
corresponding state is the one where the system converges.

On Fig. 4 we also indicated this ts time moment for the
same run. One can see that in the dynamics of ∆φi is def-
initely not obvious that this is the turning point for pre-
dictability.
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Figure 6: (color online) Characteristic time-evolution for the or-
der parameters of different final states, rm as a function of time.
For avoiding the overcrowding of the graph we have plotted only
the order parameters for |m| ≤ 2. The dashed red line indicates
the time-moment ts when the final stationary state is selected.
After this time moment all order parameters for m 6= 0 are de-
creasing. The data is obtained during the same run as in Fig. 4
N = 30, K = 0.75.

Once we have a clear condition for predictability, one can
study the average state-selection time 〈ts〉, when starting the
dynamics from random initial phases θi. More precisely, we
are interested in how this time depends on the system size
N and coupling strength K.

The trend as a function of system size for two very dif-
ferent values of K is plotted on Fig. 7. For large enough
systems N ≥ 30 a scaling emerges:

〈ts〉 = α(K) ·Nβ (33)

with β ≈ 2.43.
In the limit of N = 30 the trend as a function of the cou-

pling strength, K is plotted on Fig. 8. The results indicate
an inverse proportionality between 〈ts〉 and K:

α(K) =
A

K
, (34)

where A is constant. Hence, the selection time 〈ts〉 of the
final mode m decreases with the coupling strength K.

10 100 1000
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100

t
s
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]

K=1000
K=100
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Figure 7: (color online) The selection time 〈ts〉 as a function
of the number of oscillators, N . Simulations averaged on sev-
eral thousands of realizations. Various lines represent power-laws
with exponent 2.4.
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Figure 8: (color online) The 〈ts〉 selection time as a function
of the K coupling intensity between the oscillators. Simulations
averaged on several thousands of realizations (N = 30).

Conclusion

Collective oscillation modes were investigated in a ring of
identical and locally coupled Kuramoto rotators. Known
results were reproduced by using a novel theoretical frame-
work. Our most important result are is that we gave clear
conditions for being able to predict the final state of the
system. We have shown that the final state of the system is
always predictable after a given time-moment, ts.

The final state can be predicted right in the initial state
if this is in a compact hypersphere of radius εc(m) around
the stationary state m with:

εc(m) ≈ 1.7− 2mπ

N
. (35)

The probability that the initial state is in such domain is
very small even for small systems. As the system size in-
creases this probability is exponentially decreasing.

In the most probable case when the system does not start
form these compact domains, the dynamics of the general-
ized Kuramoto order parameters rm(t) determines the pre-
dictability condition. We found that always exists a time
moment ts from where on only one of the order parameters
rm is increasing. At this time moment the final stationary
state is predictable. The average value of this time moment,
〈ts〉 for random initial phases scales inversely proportional
with the coupling strength. For large systems we find that
〈ts〉 scales in a nontrivial manner as a function of the system
size N , with an exponent that is larger than 2.
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