
 

Investigating brain wiring by simple statistical models

Abstract
Axonal connections in the mouse brain show exponential scaling in the number of connections with 
their length, recently referred to as the exponential distance rule (EDR) [1, 2]. This work 
investigates the theoretical and experimental background for extending this rule to the brain 
connectomes of other species, including drosophila, mouse, macaque and human [3]. Our 
mathematical formulation of brain region level coarse-graining observed in the experimental data 
indicates the existence of the EDR rule for all species. We find that the simplest distance 
minimization scheme reproduces the EDR rule. Our results may suggest that some general properties 
of the brain’s structural connectivity can be interpreted by simple statistical and/or geometrical 
considerations with no relation to the complex network organization of the brain.

2 Data
The relevant information in this study are the axonal 
lengths (distances), and the weight (num. of axons) of 
neuron bundles connecting brain regions of different areas 
(See Fig. 1, 2).
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1 Motivation & objectives
Recently structural brain connectomes are more and more exhaustively reconstructed by non-invasive 
(diffusion tensor imaging) and invasive experimental methods, like retrograde or anterograde tract 
tracing (fluorescent materials are injected into well defined brain areas). One retrograde tract tracing 
experiment showed for example that the number of axons crossing the white matter decreases 
exponentially with their length, referred to as the exponential distance rule (EDR) [1, 2].
We propose to understand better this rule by looking more closely at the available data of other 
connectomes beyond the one belonging to the mouse.
Exponential functions crop up all over in physics, usually resulting from trivial processes, which 
makes unrevealing it’s originating principle in the case of brain wiring very intriguing. Here we 
propose that the simplest distance minimization scheme may reproduce the distributions observed in 
experiments.
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5 Summary
● The neuron level exponential distance rule is supported by a simple wiring cost (total connection 

length) minimization model. 
● Brain area level coarse-graining of axonal connectivity leads to gamma-like distance distribution 

interpretable through a one dimensional model.
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Fig. 2: Weighted distance distribution of inter region connections from anterograde tract tracing and 
diffusion tensor imaging data [3]. They show nearly exponential(!) distribution.

On the other hand the length distribution of individual neurons exhibits a very clear exponential 
trend (see the lhs of Fig. 3) known as the exponential distance rule (EDR) in contrast to the weighted 
distance distribution of inter region connections shown in Fig. 2 or the rhs of Fig. 3.  
It appears that gamma distributions are more suitable for describing their connection distance 
distribution (See Fig. 4).

Fig. 3: Distance distribution of 1 984 074 individual neurons (left panel) in the mouse brain 
versus the weighted inter region distance distribution in the macaque brain obtained from a 29 
area parcellation with neuronal projection thicknesses (right panel). Both data are obtained from 
retrograde tract tracing experiments [2]. 

Fig. 4: Gamma distribution fitted to the data from [3]. In the upper panels data is represented on 
a semilogarithmic graph, while the lower panels show the same data fitted with gamma 
distribution. The y-axes of lower panels are divided by a corresponding power function.

3 Coarse-graining model
Let us  imagine the infinite real axis. If points  are dropped 
randomly with density    onto this, the size distribution of the 
created cells will be:
 
Nearly exponential distribution of brain areas justify this 
choice (See Fig. 6). Segments (connections) of length     
distributed according to          (following the EDR) are placed 
randomly over the cells (See Fig. 5). A connection of length    
will overlap with a number of cells with the distance between 
the left boundary of the leftmost cell to the right boundary of 
the rightmost cell denoted by      .
For a given segment of length    the corresponding total cell 
distance     will be obtained as                                where      is 
the left margin and     will be the right margin (See Fig. 7).

Fig. 5: Illustration of the 1D 
segments (connections) and cells. 
Segments are represented with 
blue horizontal lines, while cell 
boundaries with black vertical bars.

For mathematical convenience let us calculate instead of the distance between the centers of marginal 
cells the distance between their left and right margin, i.e.   . The probability of having distance                                     
given a line segment with length    is:

Fig. 7: Notation used for deriving the 1D 
coarse-graining model.

The distribution of distances     comes from this immediately by integrating over all possible    
lengths:

Simulations show exact match with the above (See Fig. 8). All asymptotic/limiting cases lead to gamma 
distributions with different parameters. This may explain the behaviour of the data that we have seen on 
Fig. 4.

Fig. 8: Simulated vs. analytical 
distance distributions. Parameters: 
105 cells, 107 segments,  

The one-dimensional coarse-graining model fits the data very well (See Fig. 9). 

Fig. 9: Fitting the interregional connection length distribution by the one-dimensional coarse-graining 
model (Data from [3]).

Fig. 10: Illustration of distance minimization scheme. Left: Edge length distr. of an ER graph with 
nodes mapped to uniformly distributed positions in a square shaped 2D area. Right: the same 
distributions after nodes are reordered such that the total edge length is minimal. Result of 
simulation. 

Fig. 1: Illustration of the tract tracing 
technique over the left-half of the brain. 
Brain regions are defined with different 
colors, neuron bundles connect them. 
The number of neurons within a bundle 
defines the connection’s weight.

The origin of gamma distributions can be explained from the parcellation of the brain and substitution 
of individual neuron lengths with mean distances between regions and neural bundle thicknesses, i.e. 
weights (See Section 3).

Fig. 6: Distribution 
of brain region 
volumes. Data from 
[4].

A simple distance minimization scheme 
can reproduce the EDR. Nodes of an 
Erdős-Rényi (ER) graph with a fixed 
topology are mapped to uniformly 
distributed but fixed positions in the 2D 
space such that the total edge length is 
minimal (See Fig. 10).
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4 Distance minimization in 2D
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