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Gellért Zsolt Kiss

Laser Induced Photoelectron Holography in Diatomic

Molecules



DOCTORAL THESIS

presented to the Faculty of Physics,
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Abstract

Laser physics and technology has become a highly developing field of science in the

recent years. With the remarkable achievements in the production of ultrashort and intense

laser pulses new horizons have been opened for scientists to investigate ultrafast phenomena

taking place at atomic level and to manipulate matter below the microscopic size. In parallel

to the impressive developments in the laboratories the newly emerging and not completely

understood processes needed to be explained by elaborate theoretical works.

The present thesis aims to deliver novel and useful knowledge to the broad theoretical

field of laser-matter interaction, by investigating - with the use of first principle calculations

- laser induced ultrafast processes taking place in small atomic systems in the presence of

ultrashort XUV radiation fields.

In the first part of this work the theory behind the laser-atom/molecule interaction is

detailed in the framework of the single active electron approximation, then different the-

oretical methods will be presented by comparing the results obtained by their numerical

implementation for the hydrogen atom.

In the main part of the present thesis, first the development and the implementation of

a numerical method based on the direct solution of time-dependent Schrödinger equation for

diatomic molecules is presented, and then this is employed to investigate the laser induced

electron dynamics and the photoelectron holography in the H+
2 molecule.

Finally, the conclusions will be drawn, mainly on how the intensity of the laser field

and the internuclear distance - via the value and the spatial profile of the binding poten-

tial - influence the photoelectron spectra and the interference patterns, that appear in the

photoelectron hologram of the molecular target.
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CHAPTER 1.

Introduction to laser technology

In the last decades laser science has become the most promising tool for detailed investiga-

tions of ultrafast phenomena taking place at atomic scales, and for matter manipulation with

high energy concentrations. The ”ligth amplification by stimulated emission [1] of radiation”

(laser) technique, which produces coherent and highly monochromatic light beams, was im-

plemented first in experiments in 1960 [2], since then lasers have become routinely used in a

wide array of applications in our daily life. These applications include industrial utilizations,

such as material processing (cutting and welding with high-power light sources) and com-

mercial uses in optical communications and computer technology, such as data transfer via

optical fibers, data storing on digital optical discs (DVD, Blue-Ray), bar-code readers, laser

printers, pointers, or scanners. For military purposes lasers are being integrated in energy

weapons or in enemy disorientation devices, and they are routinely used for missile guidance

and even as target designators. Beyond these commercial and military applications laser

technology became crucial in the medical area, where high precision surgical procedures are

needed: tumor removals for cancer treatments [3, 4, 5], eye [6], soft-tissue [7, 8] or even

cosmetic surgeries [9].

Since the invention of the first laser apparatus laser technology has undergone a remark-

able progress in the broad spectrum of fundamental scientific domains, ranging from high

energy nuclear physics (by considering the recent improvements in laser driven fusion [10]),

or atomic physics to the more complex fields of the biochemistry and pharmaceutics, where

new horizons are being opened for the medicinal chemistry and drug synthesis[11]. At the

heart of these important achievements lie the state-of-the-art laser techniques which allow the

manipulation of matter at high spatial and temporal resolutions at nanoscopic and atomic

scales. By the continuous implementation of the newly emerging methods higher and higher

power beams have been produced, while shorter and shorter pulse durations achieved.

The year 1985 represented a milestone in this progress when the ”chirped pulse amplifica-

tion” (CPA) method was invented by Donna Strickland and Gérard Mourou1, which gives us

the possibility to amplify an ultrashort (< 10 fs = 10−14 s) laser pulse up to and even above

1015 W/cm2 intensity. Nowadays, the majority of high power (> 1012 watts) laser facilities

1Donna Strickland and Gérard Mourou were awarded the Nobel Prize in Physics on 2nd of October 2018
for their joint work on CPA
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all over the world are using the CPA technique, next to a number of commercial CPA based

Ti:sapphire laser systems, which can produce peak powers between 1010 and 1011 watts.

Moreover, by the implementation of the momentous laser facility, Extreme Light Infrastruc-

ture (ELI), new horizons seem to become accessible for the international laser community,

where the aspiration to operate within extreme conditions has become a daily routine. In

ELI, which until this moment is based on three different pillars: ELI-Beamlines in Prague

(Czech Republic), ELI Attosecond Light Pulse Source (ELI-ALPS) in Szeged (Hungary),

and ELI Nuclear Physics (ELI-NP) in Măgurele (Romania), fast and remarkable scientific

progresses are being achieved already: e.g., ELI-NP holds the world record for the highest

power (10 petawatts) produced ever [12].

Figure 1.1: Progress in achievable light intensity with the year. The black curve shows a
continuous increase having two large slopes, first around the year 1960 (the invention of the
laser), and another one starting from 1985 (the invention of the CPA technique). The figure
is adapted from Mourou and Yanovsky (2004) c 2004 OSA [13].

Due to the possibility of generating these extreme conditions (focusing high intensity

pulses onto atomic systems and operating with ultrashort time scales) new and previously

not entirely understood phenomena can be induced and investigated at the nanoscopic scale

and below that. The most well known phenomenon that occurs during the interaction

between an incident light beam [electromagnetic (EM) wave] and matter is the photoelectric

effect, when the target system (atom/molecule) is ionized by the emission of a bound electron
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Chapter 1. Introduction to laser technology

from the negative energy region (Eb < 0) into the continuum (positive energy region Ek > 0)

induced by the external EM field. To explain that regardless of the EM field intensity, light

may eject electrons even at low intensities, Albert Einstein proposed [14] that the light beam

can be considered as a collection of discrete wave packets, i.e. photons, each having a given

ν frequency and energy Eν = hν. This link between the energy and frequency was given by

Max Planck [15] via the Planck constant h ≃ 6.626×10−34 Js. In the photoelectric mechanism

the bound electron absorbs a single photon from the radiation field and gets released, then

detected experimentally as a photoelectron with the maximum energy of Ek = hν−L, where
L = −Eb > 0 stands for the work function, i.e., the amount of energy that should be

”invested” to release the bound electron. However, in the spacial case, when the energy of

the absorbed photon is lower than the work function L, but equal to the energy difference

between two bound states hν = Eb′ −Eb, a process called photoexcitation takes place, which

means that the electron is carried by the pumped energy from a lower energy level b to the

higher level b′.

It was observed later, that if the radiation field is a high intensity (> 1010 W/cm2)

laser field, depending on the field’s parameters next to the single photon ionization other

ionization mechanisms may appear as well, such as the multi-photon ionization (MPI), above-

threshold ionization (ATI), tunneling ionization (TI), or over-the-barrier ionization (OBI).

Beyond these primary processes, secondary mechanisms may also occur resulting from the

quiver motion of the ionized electron under the influence of the radiation field. Once the

electric component of the laser field (e.g., a sinusoidal wave function of time) changes its

sign (it reverse its direction) the previously ejected electron may be driven back so closely to

the parent ion that will interact with this. During this interaction the EM field accelerated

photoelectron with a probability different than zero may be reabsorbed by the ion, and

during the recollision event a single, high-frequency photon is released. In experiments,

where gas or solid targets are illuminated, these high-energy photons are detected as high

harmonics of the initial beam, meaning that they will appear in the measured spectra having

frequency values integer multiples nν of the original light’s frequency (ν). This process is

called high harmonic generation (HHG), and it enjoys a high-level of interest since it has

opened the possibility to produce high energy attosecond (1 as = 10−18 s) pulses in the XUV

regime. Apart from the high harmonic generation, according to a second scenario the laser-

driven electron may not be reabsorbed but only scattered on the residual ion, resulting in the

diffraction of the electron wave packet. The name of this process is the laser induced electron

diffraction (LIED), and can be used to obtain structural information about the target [16].

This information regarding the geometry of the atom/molecule is imprinted in the measured

photoelectron momentum distribution [or photoelectron spectra (PES)] [17] of the irradiated

target. In the case when next to the diffracted (scattered) wave packet a second (unscattered,

or weakly scattered) wave is also present, the coherent superposition of these two waves leads

to a more structured photoelectron spectra than in the case of LIED. It has been shown [18]

that the well distinguishable radial fringe pattern in the PES is created by the interference of
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the wave packets emitted during the same quarter cycle of the radiation field but following

different paths (i.e., accumulating a certain phase difference). In this picture, where the

weakly scattered EWP is considered as part of the reference wave packet and the strongly

scattered EWP as part of the signal wave packet, the spatial interference pattern may be

interpreted as the hologram of the target, and the process itself as the holographic mapping

(HM) of the target’s state. Since the location of the interference minima and maxima located

in the HM pattern strongly depend on the local (short range) potential of the parent ion

experienced by the strongly scattered EWP, the HM can be considered a promising tool for

extracting relevant structural information about the irradiated system.

By the recent developments in the field of laser science, experimental groups reached the

limit of the order of attoseconds for the pulse durations[19], while world leading theoreticians

are contributing to that with their theoretical works based on comprehensive - in the most

occasions first-principle (ab-initio) - calculations [20, 21]. These recent achievements, which

resulted in the decrease of the pulse durations to the femto- and sub-femtosecond regime

opened new possibilities in the imaging and controlling of quantum processes taking place in

atomic and molecular systems. The typical time scale at which the most well known quantum

phenomena occur is situated below the region of picoseconds (10−12 s). As illustrated on

Figure 1.2 the motion (vibration) of the atoms in molecules and solids occurs at the order

of tens and hundreds of femtoseconds (1 fs = 10−15 s), while the dynamics of the electrons

in nanostructures or in smaller systems are taking place between few attosecond (1 as =

1fs/1000 = 10−18 s) and hundreds of femtoseconds.

Figure 1.2: Time scales and characteristic lengths for dynamics in atoms and molecules.
Adapted from [19].

With the production of fs pulses the area of the ultrafast spectroscopy was born, and

the possibility to follow and study in real time the movement of atoms in molecules during
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Chapter 1. Introduction to laser technology

chemical reactions. By using attosecond laser pulses the making of ultrafast movies from

the motion of bound electrons inside atoms and molecules became possible [22, 23]. Beyond

real time investigations, by finding the optimal pulse parameters lasers may also be used

as appropriate tools to induce desired quantum states in the targets in order to facilitate

chemical reactions [24, 25].

Due to the newly emergent phenomena, resulted from the interaction between matter

and ultrashort, high intensity radiation fields, a correct understanding of the underlying

processes is required. This can be achieved by extensive and elaborate theoretical investiga-

tions, which on the other hand will play an important role to generate further directions for

experimentalists and for new technical developments in the field of laser science and tech-

nology. The present work is a theoretical one, which aims to deliver additional and deeper

understanding - by the development of efficient numerical tools - in the field of laser induced

electron dynamics, mainly to decipher the features appearing in the photoelectron spectra

of the diatomic (H+
2 ) molecule. The work, as it will be presented in the following sections,

is based on first principle calculations.
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CHAPTER 2.

Laser-matter interaction

2.1 Principle of lasers

A traditional laser apparatus, as its name (light amplification by stimulated emission

of radiation) indicates, is based on the stimulated emission phenomenon, which notion was

intuitively first introduced and explained by Albert Einstein in 1917 [26]. Nowadays, the

term ”lasers” are used worldwide to describe all sources of lights that emit coherent electro-

magnetic waves in the form of narrow beams.

From the dawn of the quantum mechanics we know that inside atoms/molecules the

electrons are located on well defined (discrete) energy levels, and via an energy change process

with the environment they may jump between these levels. By the absorption of external

energy an electron may be excited to a higher energy state |ψ2〉, and after a short period

of time (∼ 10−8 s) with a high probability will spontaneously jump back to a lower energy

(ground) state |ψ1〉 by emitting its excess energy (∆E = E2 − E1) into its environment.

When this exes energy is emitted in a form of a photon (Ephoton = ∆E), the process is

known as the spontaneous emission. However, if a photon with energy similar to ∆E passes

by the excited electron prior to that the spontaneous emission happens, by interacting with

this will stimulate the release of the excess energy in the form of a photon. This process

is referred to as the stimulated emission and the released photon is emitted in the same

direction as the incident one, having the same frequency, phase and polarization. These

processes could be exhaustively described within the quantum radiation theory elaborated

by Paul Dirac starting from the 1920s. Due to the later and notable works done by the

American Charles Hard Townes and the Soviet physicist, Aleksandr Prokhorov and Nikolay

Basov, a significant amount of new theoretical knowledge had been acquired until the 1950s,

leading to the construction of the first radiation amplifier by J. P. Gordon et al [27] in 1954,

which operated in the microwave regime. This was named maser, which is the acronym for

”microwave amplification by stimulated emission of radiation”. It was the first time, when

experimentally was proven that microwave radiation can be amplified by using specially

prepared ammonia molecules (NH3). Later in 1958, A. H. Schawlow and C. H. Townes

published [28] the principles of the optical masers and gave new perspectives for building such
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Chapter 2. Laser-matter interaction

amplifying devices that can operate at shorter wavelengths, e.g., in the optical regime 1. A

few years later, in 1960, based on this article, Theodore H. Maiman constructed the first laser

in the Hughes Research Laboratories. This device used ruby crystals to produce amplified

radiation at λ = 694 nm wavelength. Since 1960, due to the continuous developments in laser

science, new laser devices have been constructed, which operated at various wavelengths:

covering the major part of the electromagnetic spectrum, starting from the microwave region

(λ ∼ 1 mm) down to the XUV (λ ∼ 10 nm) radiations (see Figure 2.1 at the end of this

section).

A traditional laser apparatus is made of from three essential components: the active

medium, the energy pump, and the optical resonator. Considering a medium with a two

level system where E1 < E2, the intensity of an electromagnetic wave which travels through

this medium in the Ox direction is given by the Beer-Lambert-Bouguer law

Iν(x) = Iν(0)e
−µ(ν)x, (2.1)

where ν is the frequency of light, and the absorption coefficient µ(ν) = [N1−N2(g1/g2)]σ(ν)

depends on the population densities N1, N2, the multiplicity (statistical weights) of the two

levels g1 and g2 (g = 2J + 1 with J being the total angular momentum quantum number

of the electron), while σ(ν) is the absorption cross section of the |ψ1〉 → |ψ2〉 transitions.
An amplification of the radiation field can be obtained if µ(ν) becomes negative, i.e., the

condition N2 > (g2/g1)N1 is met. Considering that under thermal equilibrium conditions

- according to the Boltzmann distribution law - the lower energy levels are first populated

and remain more populated than the higher energy levels, i.e.,

N2 = N1
g2
g1

exp

(

−E2 −E1

kbT

)

. (2.2)

The N2 > (g2/g1)N1 population inversion may be achieved only in non-equilibrium by pump-

ing external energy (optically or in the form of electric current) into the system. However, it

can be shown that if the medium is built up from a group of atoms with only two energy-levels

the population inversion can not be achieved, since the continuously excitations will reach

equilibrium with the de-exciting processes (spontaneous and stimulate emissions), and the

N1 → N2 population transfer will stop when N1 = N2 is met, resulting in the so-called optical

transparency. Hence, in order to achieve non-equilibrium conditions, at least one additional

- intermediate - energy state (|ψ3〉) is required with the condition E1 < E2 < E3. In the case

of the three-level lasers the pumping process, which depending on the active medium can

be an optical pump process of a flash-lamp, an electrical discharge, or even some chemical

reactions, will excite the atoms from the E1 to the E3 energy level. Then a fast radiationless

transition E3 → E2 will occur, where the ∆E32 = E3 − E2 energy is transferred into heat

1In 1964 Townes, Prokhorov and Basov were awarded the Nobel Prize in Physics for their works regarding
the developments of masers and lasers.
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2.1. Principle of lasers

(e.g., vibrational motion). An electron from the level E2 will decay to E1 by releasing a

photon with the energy hν = E2 − E1 (laser transition). Given that the lifetime of the

later transition is much longer than the former one, i.e., τ21 ≫ τ32, the population of the E3

level will be practically zero next to the population of the second energy level: N3/N2 ≈ 0,

therefore the population of the excited (state) atoms will accumulate on the E2 energy level,

while the highest level becomes practically vacated. Thus, during the pump process further

atoms can be excited to the E3, and consequently the condition N2 > N1 achieved (the pump

transition is faster than τ21), which leads to population inversion.

In order to obtain even higher amplification of the electromagnetic wave, the active

medium is introduced into an optical resonator (optical cavity), which in the simplest setup

is a Fabry-Pérot interferometer. In this case the active medium is placed between two highly

reflecting mirrors separated by the distance L giving the possibility for the beam to make

hundreds of passes through the gain medium. One of the mirrors is called the high reflector

and is used to reverse the incident light back into the active medium, thus its reflectance

in the most optimistic case should be R1 ≃ 1. The other mirror is the output coupler and

it is only partially reflective, i.e., R2 ≥ 99%, which allows a small portion of the beam to

transmit through it. In this way, an initial wave with intensity Iν(0) which travels through

the medium and which is reflected back twice by the mirrors, is amplified by the factor of

G(ν) = Iν(2L)/Iν(0) = R1R2e
−2Lµ(ν) = (1− T2)e−2Lµ(ν), (2.3)

where T2 is the transmittance of the output coupler and given that it is a small number one

can safely use that 1− T2 ≃ e−T2 . By taking into account, that other factors dependent on

the laser frequency ν may also be present in the amplification process, e.g., scattering and

diffraction losses, which work against the beam amplification, these unwanted losses together

with the transmittance of the output mirror can be grouped together into a loss factor γ(ν),

and the gain of the intracavity beam after a round-trip given as

G(ν) = e−[2Lµ(ν)+γ(ν)]. (2.4)

Considering that the field amplification occurs whenG(ν) > 1, the expression for the minimal

population inversion required for this condition can be deduced to:

∆Nmin =
g1
g2
N2 −N1 ≥

γ(ν)

2Lσ(ν)
(2.5)

Lasing is achieved when this condition is fulfilled by the pumping process. In the first step

randomly emergent spontaneously emitted photons appear in the medium, and a part of

them which are ejected along the axis of the resonator will be reflected back and stimulate

the emission of secondary photons emitted from the atoms already pumped to the excited

level. These secondary photons will have the similar directions, phases and frequencies as the
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Chapter 2. Laser-matter interaction

initial ones, and will further stimulate newly excited atoms found on the |ψ2〉 level. Hence,

an avalanche of highly coherent photons will appear inside the active medium which will

travel along the resonator axis. The signal of those initial photons that were not emitted

parallel to the resonator axis will not gain final amplification, since they either will not be

reflected by the mirrors or after a few reflections will exit the cavity or absorbed by the

resonator’s side walls. As a consequence, their signal will be lost for the lasing process.

In real systems where many atoms are present inside the cavity the transition between the

energy states will not be exactly the same for all the radiating elements, since each atom may

experience a slightly different environment. The electron cloud of each atom is influenced by

the presence and motion of its neighboring atoms, hence its energy levels and transition rates

may be slightly shifted from the well defined and exact values obtained for the case where

only a single atom would be present in the radiation field. From the statistical point of view,

this can be translated into the simple picture, according to which the energy levels of each

atom is broadened. As a consequence, the active medium will have the capability to amplify

frequencies located inside a certain range ν ± ∆νmax, where ν = ∆E21/h. However, the

physical size (the inter-mirror distance L) of the optical resonator will differentiate between

these possible frequencies, in a way that after many reflections - from the mirrors - only those

waves will show constructive interference, whose multiple integer of their half wavelength is

equal to the optical path length

n · L = q
λ

2
. (2.6)

In the relation above n is the refractive index of the medium, through which the light

travels with the speed c/n, and the integer number q is known as the longitudinal (axial)

mode order, that labels the frequencies νq = qc/(2nL) of the standing waves confined in

the cavity. All other waves whose lengths do not satisfy this relation will be suppressed by

destructive interference and will not take part in the amplification process. Considering that,

the separation between the axial nodes ∆νax = νq+1−νq = c/(2nL) is usually smaller than the

spectral width of the amplification (∆νax < 2∆νmax), the laser will operate simultaneously

for all q nodes where νq ∈ [ν − ∆νmax, ν + ∆νmax] and where the condition (2.5) for the

population inversion can be fulfilled by the pumping process [i.e., G(νq) > 1]. The selection

of a fewer modes for the lasing process can be done either by shortening the length of the

interferometer (in this case ∆νmax will increase and the number of νq inside the gain domain

decrease), or by inserting into the resonator a frequency selective optical component, the

so-called Fabry-Pérot etalon. It has to be mentioned though, that the cost of both mode-

selection methods will be manifested in efficiency losses.
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2.1. Principle of lasers

Figure 2.1: Wavelengths of commercially available lasers (as of May 2019). Most of the data
available online can be found in Weber’s book Handbook of laser wavelengths [29].
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Chapter 2. Laser-matter interaction

2.2 Maxwell’s equations for describing the laser field

In the picture of the classical physics a laser field is described by its electric ~E(~r; t) and

magnetic ~B(~r; t) component, which are the solutions of the Maxwell equations (SI units) in

the vacuum [no electric charge density (ρ = 0), no electric current ( ~J = 0)]:

∇ · ~E(~r; t) = 0

∇ · ~B(~r; t) = 0

∇× ~E(~r; t) = −∂
~B(~r; t)

∂t

∇× ~B(~r; t) =
1

c2
∂ ~E(~r; t)

∂t
, (2.7)

where the two vectors are orthogonal to each other ( ~E · ~B = 0) and c = 2.99792458 × 108

m/s is the speed of light - the speed of the electromagnetic radiation - in free space. ∇ is the

so-called nabla, or Del, - the vector differential - operator, which in the Cartesian coordinate

system is given as

∇ = x̂(∂/∂x) + ŷ(∂/∂y) + ẑ(∂/∂z), (2.8)

where x̂, ŷ, ẑ represent the orthogonal unit vectors (x̂2 = ŷ2 = ẑ2 = 1; x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0).

The electric and magnetic fields may also be expressed in terms of a scalar potential Φ(~r; t)

and a vector potential ~A(~r; t):

~E = −∇Φ(~r; t)− ∂ ~A(~r; t)

∂t
,

~B = ∇× ~A(~r; t). (2.9)

These potentials are not uniquely defined and can be freely adjusted until the electric and

magnetic fields remain unchanged. These adjustments are the so called gauge transfor-

mations. By performing the following transformation - involving the vector potential -

~A(~r; t)→ ~A(~r; t) +∇fG(~r; t), (2.10)

with fG(~r; t) (the so-called gauge function) being an arbitrary real function of space and

time, the magnetic field remains unchanged:

~B = ∇× ( ~A+∇fG) = ∇× ~A, (2.11)

since ∇ × (∇fG) = 0. However, this transformation will change the electric component

accordingly to:

~E = −∇Φ − ∂ ~A

∂t
−∇∂f

G

∂t
≡ −∇

(

Φ+
∂fG

∂t

)

− ∂ ~A

∂t
. (2.12)
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2.2. Maxwell’s equations for describing the laser field

To avoid the change of the electric field a second transformation - involving the scalar

potential - should be used, which reads as:

Φ(~r; t)→ Φ(~r; t)− ∂fG(~r; t)

∂t
. (2.13)

The Coulomb (radiation) gauge

In electrodynamics or quantum chemistry a frequently used gauge is theCoulomb gauge

(CoulG), or radiation gauge, when the condition

∇ · ~A(~r; t) = 0 (2.14)

is fulfilled, and the scalar potential that satisfies the equation ∇(∇Φ) = ∆Φ = −ρ/ǫ0
(deducible from the general form of Maxwell’s first equation, i.e., from the Gauss law: ∇ ~E =

ρ/ǫ0) will be zero, since in the free space electromagnetic radiation the electric charge density

ρ = 0. It is a convenient choice to use the Coulomb gauge, since the electric component of

the laser field is calculated in this way simply by the negative of the time derivative of the

vector potential:

~E(~r; t) = −∂
~A(~r; t)

∂t
. (2.15)

By introducing Equation (2.15) and ~B = ∇× ~A into Maxwell’s fourth equation (2.7), and

applying the general vector relation of

~a× (~b× ~c) = ~b(~a · ~c)− (~a ·~b)~c (2.16)

one obtains: ∇(∇· ~A)−∇2 ~A = (−1/c2) (∂2/∂t2) ~A, where the first term disappears (∇ ~A = 0),

and the Maxwell’s equation in potential formalism using the Coulomb gauge leads to the

homogeneous wave equation for the vector potential

∂ ~A2(~r; t)

∂t2
= c2∇2 ~A(~r; t). (2.17)

It can be easily proven, that the above equation is satisfied by monochromatic plane waves

having the wavelength λ and phase ϕ, and which can be described generally by the complex

functions
~Aλ,ϕ(~r; t) = ǫ̂A0

[

ei(
~k~r−ωt−ϕ) + e−i(~k~r−ωt−ϕ)

]

, (2.18)

where i =
√
−1 is the imaginary unit, ω is the angular frequency, ~k is the propagation vector

(|~k| = ω/c = 2π/λ), ǫ̂ is the polarization vector, and A0 represents the amplitude of the

vector potential.

By considering Eq. (2.18), for the electric ( ~E) and magnetic component ( ~B) of the

laser field (as the solutions of the Maxwell’s equations) two monochromatic plane waves are
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Chapter 2. Laser-matter interaction

obtained, which propagate in space with the speed of light c, and are perpendicular to each

other and to the propagation direction:

~E(~r; t) = ǫ̂E0 cos(~k · ~r − ωt− ϕ)
~B(~r; t) = (k̂ × ǫ̂)E0

c
cos(~k · ~r − ωt− ϕ), (2.19)

where E0 > 0 is amplitude of the electric field. The above equations describe a continuous

wave, which has infinite temporal and spatial extents, and which is employed (as an appro-

priate tool) when the interaction between matter and continuous-wave lasers or multi-cycle

(”long”) laser pulses are studied. In other cases, when ultrashort few-cycle laser fields are

considered (as in our case) the temporal shape of the ~E(~r; t) gets modified, since the ultra-

short laser pulses are produced by the superposition of monochromatic plane waves with

appropriate frequencies (ν), amplitudes (E0) and phases (ϕ). When the propagation direc-

tion and the polarization of these components are the same, the net electric field composed

by the constituent waves can be described mathematically with the equation:

~E(t) =







ǫ̂E0Fmask(t) sin(~k · ~r − ωt+ ϕ0), if ; t ∈ [0, τ ]

0, otherwise,
(2.20)

where τ is the duration of the laser pulse, Fmask(t) is an envelope function that shapes the

temporal profile of the pulse, and ϕ0 describes the difference between the carrier-wave (with

angular frequency ω) and the envelope. The most frequently used mask functions in laser-

matter investigations are the Gauss- and square-envelopes. In the present work I used a

sine-square envelope function having the mathematical form of: Fmask(t) = sin2(πt/τ).

The dipole approximation

In numerous occasions, when smaller systems (light atoms, few atomic molecules) are used

as laser targets, it is a convenient and a valid approach to use the dipole approximation (DA),

which states that spatial variations of the electric field may be neglected [i.e., ~E(~r; t)→ ~E(t)]

in the vicinity of the target, since the wavelength of the incident wave λ is much larger than

the position ~r of the ejected electron: λ >> r. In the present case we considered XUV pulses

having the central wavelength in the order of 100 nm (= 10−7 m), while the typical size of

an atom or diatomic molecule is in the interval of 1/2 Ångstrom (the size of the hydrogen

atom) and tens of Ångstroms (1 Å= 10−10 m). In this way, the electric field and the vector

potentials are approximated as

~E(~r; t) → ~E(t)

~A(~r; t) → ~A(t) = −
∫ t

0

dt′E(t′), (2.21)
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2.3. Charged particle in laser field

meanwhile the condition [Eq. (2.14)] of the Coulomb gauge remains valid as well. In addition

to this, within the dipole approximation the magnetic component of the laser field disappears:

~B(~r; t) ≈ ∇× ~A(t) = 0. (2.22)

In the next few lines, the mathematical deduction of the dipole approximated electric

field is presented. By taking into account that the magnitude of the propagation vector

|~k| = 2π/λ is inversely related to the wavelength λ of the incident light, for small target

systems the condition kr ≪ 1 is valid. By denoting with x = |~r|/λ, and using the unity

vectors k̂ = ~k/|~k|, r̂ = ~r/|~r| the expression of the vector potential [Eq. (2.18)] may be given

in the form of

~A(~r; t) = ǫ̂A0

[

exp
{

i[2πxk̂r̂ − (ωt+ ϕ)]
}

+ exp
{

−i[2πxk̂r̂ + (ωt+ ϕ)]
}]

. (2.23)

By using the Taylor series and employing the multipole expansion of Equation (2.23) the

form of the vector potential in dipole approximation reads as

~A ≈ ǫ̂A0 (1 +O(x))
[
e−i(ωt+ϕ) + ei(ωt+ϕ)

]
, (2.24)

where O(x) stands for the error of the expansion. Considering this, in the expression of the

laser’s electric field (2.20) the term ~k · ~r ≤ 2π|~r|λ will vanish. Therefore, the short-pulsed

laser field is described by its electric component, which in the present work will be considered

with the following analytical form:

~E(t) =







ǫ̂E0 sin
2
(
πt
τ

)
sin(ωt+ ϕ0), if ; t ∈ [0, τ ]

0, otherwise.
(2.25)

2.3 Charged particle in laser field

A particle having the electric charge q and mass m is accelerated in the laser field by the

Lorentz force:
~FL = m

d2~r

d2t
= q

[

~E + ~v × ~B
]

, (2.26)

where ~v = d~r/dt is the electron’s velocity. In the dipole approximation and using the

Coulomb gauge the force between the particle and the laser field gets simplified, and the

dynamics of the charged particle will be simply governed by the electric field of the incident

radiation field:

~a =
d2~r

d2t
≈ q

m
~E(t). (2.27)

However, in order to describe generally the dynamics of the quantum particle in radiation

field, the Hamiltonian of the system needs to be obtained first (the starting point of quantum

physics calculations). A complete picture concerning the interaction with radiation fields can
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Chapter 2. Laser-matter interaction

be acquired by employing the Lagrangian formalism, where

d

dt

[
∂L(~r, ~v; t)

∂~v

]

− ∂L(~r, ~v; t)
∂~r

= 0 (2.28)

is the Euler-Lagrange equation, and it is identical with the Newton’s law for the force [i.e.,

Equation (2.26)], in the case when for the L(~r, ~v; t) Lagrangian the appropriate expression

is introduced:

L(~r, ~v; t) = T (~v)− U(~r, ~v; t) = (2.29)

=
1

2
m~v2 − q

[

Φ(~r; t)− ~v ~A(~r; t)
]

.

Using the canonical momentum

~P =
∂L
∂~r

= m~v + q ~A(~r; t) (2.30)

the Hamiltonian function will be given as

H(~r, ~v; t) = ~P · ~v − L(~r, ~v; t) = 1

2
m~v2 + qΦ(~r; t). (2.31)

After introducing the expression ~p = ~P − q ~A, the above equation leads to the Hamiltonian,

which is expressed in terms of the scalar and vector potentials as

H(~r, ~P; t) =

[

~P − q ~A(~r; t)
]2

2m
+ qΦ(~r; t). (2.32)

Here, it has to be stressed out that the above equation describing the Hamiltonian is a

gauge invariant expression, and while the kinetic momentum and other physical observable

quantities remain invariant, the canonical momentum ~P depends on the chosen gauge.

Quantum mechanical description

In the non-relativistic limit and by neglecting the small spin dependent terms, the Hamil-

tonian of a quantum particle is obtained by replacing the quantities in Equation (2.32) with

their corresponding operators (e.g., the canonical momentum P in coordinate representation

is replaced by the operator P̂ = −i~∇):

Ĥ =

[

P̂ − qÂ
]2

2m
+ qΦ̂. (2.33)

The Hamilton operator will act on the wave function Ψ(~r; t), which is introduced to describe

the charged particle being in the quantum state |Ψ(t)〉, and the modulus square of which

gives the probability density
dP (~r; t)

d~r
= |Ψ(~r; t)|2 (2.34)
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2.3. Charged particle in laser field

of finding the particle in position ~r ∈ [~r, ~r+d~r] at time moment t. The action of the Hamilton

operator on the quantum state reads as:

Ĥ|Ψ(t)〉 =
[

1

2m
P̂2 − q

2m

(

P̂Â+ ÂP̂
)

+
q2

2m
Â2 + qΦ̂

]

|Ψ(t)〉. (2.35)

In the Coulomb gauge [∇ · ~A(~r; t) = 0 and Φ(~r; t) = 0] and by using the coordinate re-

presentation of the operators P̂ = −i~∇, Â = ~A(~r; t) and Φ̂ = Φ(~r; t), one can easily prove

the equality

P̂
(

Â|Ψ(~r; t)〉
)

+ Â
(

P̂|Ψ(~r; t)〉
)

= −i~
(

∇ ~A
)

|Ψ(~r; t)〉+ 2 ~A
(

P̂|Ψ(~r; t)〉
)

=

= 2 ~AP̂|Ψ(~r; t)〉, (2.36)

and give the expression of the Hamiltonian as

ĤCoulG(~r; t) =
1

2m
P̂2 − q

m
~A(~r; t)P̂ +

q2

2m
~A2(~r; t), (2.37)

which in dipole approximation yields to

ĤCoulG
dip (~r; t) =

1

2m
P̂2 − q

m
~A(t)P̂ +

q2

2m
~A2(t). (2.38)

Gauge transformations

As it was mentioned earlier, the mathematical form of the vector potential ~A(~r; t) and

scalar potential Φ(~r; t) can be freely chosen according to the gauge transformations (2.10)-

(2.13) leaving the physical observables [the electric field ( ~E) and the magnetic field ( ~B)]

unchanged. However, in quantum mechanics, the gauge transformations should be also

applied on the wave function Ψ and on the arbitrary operator Â as follows

Ψ → Ψ′ = T̂Ψ

Â → Â′ = T̂ ÂT̂ †, (2.39)

where the transformation operator T̂ is defined as

T̂ = exp
{

−i q
~
fG(~r; t)

}

, (2.40)

with fG(~r; t) being the gauge function, while the expectation value of the measurable quan-

tity A remains gauge invariant:

〈A〉 = 〈Ψ
′|Â′|Ψ′〉
〈Ψ′|Ψ′〉 ≡

〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉 . (2.41)
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Chapter 2. Laser-matter interaction

Besides the Coulomb gauge another two favored choices are the velocity and the length

gauges, which can be obtained from the first by employing the quantum mechanical trans-

formations according to Eq. (2.39) by employing the appropraite (correct) gauge functions

fG.

Velocity gauge

In the velocity gauge the potentials and the wave functions are obtained by transforming the

potentials from the dipole approximated Coulomb gauge by using the following generating

function

fG(~r; t)→ fG
cg→vg(t) = −

−q
2m

∫ t

−∞

dt′~[Acg(t′)]2. (2.42)

The expression for these functions yields to:

~Avg(t) → ~Acg(t) +∇fG
cg→vg(t) ≡ ~Acg(t)

Φvg(t) → Φcg(t)−
∂fG

cg→vg(t)

∂t
≡ q

2m
[ ~Acg(t)]2

|Ψvg(~r; t)〉 → exp

{
iq2

~2m

∫ t

−∞

dt′[ ~Acg(t′)]2
}

|Ψcg(~r; t)〉. (2.43)

Since in many circumstances the term containing ~A2(t) is much smaller then the term depend-

ing on ~A, the former is usually neglected from the Hamiltonian operator, which yields to a

simplified form of the Hamiltonian in the velocity gauge

Ĥvg =
P̂
2m
− q ~A(t) P̂

m
+
qA2(t)

2m
≃ P̂

2m
− q ~A(t) P̂

m
. (2.44)

In Eq. (2.44) it can be observed that the vector potential is coupled with the velocity

~v ← P̂/m of the charged particle.

Length gauge

The length gauge is obtained by using the following generating function

fG(~r; t)→ fG
cg→lg(t) = −~r ~A(t), (2.45)
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2.3. Charged particle in laser field

which leads to the expressions of the vector and scalar potential

~Alg(t) → ~Acg(t) +∇
[

−~r ~Acg(t)
]

= 0

Φlg(t) → Φcg(t) + ~r · ∂
~A(t)

∂t
= −~r · ~E(t) (2.46)

and transforms the wave function (i.e., quantum state) according to:

|Ψlg(~r; t)〉 → exp

{
iq

~
~r ~A(t)

}

|Ψcg(~r; t)〉. (2.47)

Using the above equations the Hamiltonian in length gauge reads as:

Ĥ lg =
P̂2

2m
− q~r ~E(t), (2.48)

which in the case when the charged particle is the electron (q = −e = −1.6× 10−19 C) it is

written as: Ĥ lg = (P̂2/2m) + e~r ~E(t). In addition to that, if the particle is also influenced

by an electrostatic field created by the local electric charges found in the particle’s vicin-

ity (e.g., positively charged nuclei, or negatively charged electron cloud) the Hamiltonian

should be complemented also with the potential energy term V (~r) in order to describe these

interactions.

In this work I preferred to use the length gauge [considering the expression Eq. (2.48)

of the Hamiltonian], since its numerical implementation is less complicated than the use of

other gauge approaches.
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CHAPTER 3.

Laser induced processes in atoms and

molecules

As already specified in the introductory part (Chapter 1) the interaction of short and

intense laser pulses with atoms and molecules mainly manifests in the field induced motion

of the light electrons. The vibration and rotation of the heavier nuclei begin to play also

an important role in the field induced dynamics, when the wavelength of the intense ra-

diation field is in the upper range of the spectrum, i.e., in the infra-red (IR) domain. In

these extreme conditions the bond-breaking and fragmentation of larger molecular systems

(biomolecules) may also occur. Although, in most cases when interactions with ultrashort

(tens of attosecond) pulses in the XUV regime are studied - as in the present case - the Bohr-

Oppenheimer and the fixed nuclei approximation can be safely considered and the motion

of the nuclei neglected next to the dynamics of the electrons. Thereby, we will focus our

attention only on the electron’s dynamics inside the laser field and at this moment will not

consider the investigation of the nuclear motion.

In the following section the main aspects regarding the various types of photoionization

(PhI) processes will be briefly presented. This will be followed by a short review on the

high harmonic generation (HHG) process, which is one of the most promising and interest-

ing result of the photoionization for the area of attosecond pulse generations. Finally, the

theory behind the holographic mapping (HM) of atoms and molecules using laser driven

photoelectrons will be discussed.

3.1 Photoexcitation and ionization mechanisms

The primary processes during the interaction between atomic systems and external

electromagnetic fields consist of the electron excitation (or stimulated de-excitation) and

photoionization of the irradiated system. Since the investigation of the dynamics of the

ejected electrons presents the central topic of the present thesis the nature of these mecha-

nisms will be briefly summarized.
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3.1. Photoexcitation and ionization mechanisms

Photoexcitation and de-excitation

A single photon excitation occurs when an electron located on a |ψi〉 bound state (at the

beginning of the laser field usually the ground state) absorbs one photon whose energy is

lower than the Ip ionization energy of the target (i.e., measured from the given initial state),

but equal to the

εph = hν = εf − εi (3.1)

energy difference between a final (excited bound) and the initial state. One photon excita-

tions begin to be the dominant mechanisms even at low and moderate laser field intensities,

since inside a laser pulse many photons with different frequencies are simultaneously present,

and it is probable for the electron to ”find” a photon with the appropriate energy to jump

to the next (excited) level. According to the selection rule of optical transitions when the

electron absorbs a single photon and is excited to the |ψf〉 final state its orbital quantum

number l will be increased or decrease by one (∆l = lf − li ± 1). In the case of high

intensity laser fields the photon density is higher, and two or multi-photon absorptions may

be present. In the case of the two photon excitation the electron absorbs two photons almost

at the same time and jumps from the initial state to the higher energy level εf ′ = 2hν + εi

while its orbital quantum number is changed according to ∆l = 0.

Single-photon ionization

When the absorbed photon’s hν energy is greater than the Ip ionization energy of the

target, the electron will be released by the laser field from the ground state into the continuum

with the kinetic energy

εSPI
kin =

p2

2m
= hν − Ip. (3.2)

The single-photon ionization (SPI) mechanism may be present even at low and moderate

field intensities, and is a dominant ionization process when the photon density is low (e.g.,

it is dominant when short wavelength - UV, XUV, X-rays - lasers are used and where the

energy per photon ratio is high).

Multi-photon and above-threshold ionization

By the continuous developments in the laser technology the field’s intensities have been

further increased. However, these high field (amplifications) intensities were first achieved

for larger wavelengths, i.e., shorter ν central frequencies, meaning relatively low photon

energies, which were not suitable to fulfill the (3.2) condition of the single-photon ionization.

Nonetheless, experimentalists were still able to observe electrons in the continuum. Due to

the high field intensities these photoelectrons were liberated by absorbing multiple number

of photons. The energy gain from an integer number of n photons is transformed into the

kinetic energy of the ejected electrons according to the relation

εMPI
kin = n · hν − Ip, (3.3)
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Chapter 3. Laser induced processes in atoms and molecules

and the process is known as the multi-photon ionization (MPI) mechanism. Phenomeno-

logically, this process can be explained with the existence of virtual energy levels inside the

atom/molecule, which are separated by the energy difference ∆ε = hν and have a very short

∆t lifetime according to the relation ∆ε ·∆t ≥ ~/2, which is known as the Heisenberg uncer-

tainty principle. During this short period of time [i.e., ∆t ≥ 1/(ν4π) = T/(4π)] a virtually

excited electron may absorb another hν energy photon and will advance to the next virtual

level. This action is repeated till the total energy of the electron will be positive (i.e., the

electron is released). In the spacial case when the virtual levels coincide with actual excited

states the process known as the resonant enhanced multi-photon ionization mechanism takes

place. When the electron absorbs more than the sufficient number of photons to acquire pos-

itive energy, the above threshold ionization (ATI) mechanism is present, where the emitted

electron’s kinetic energy is calculated as:

εATI
kin = (n+ n′) · hν − Ip. (3.4)

In this case the electron absorbs an n′ ≥ 1 number of excess photons, while in the measured

photoelectron spectrum these multiphoton absorptions will appear as evenly spaced peaks

separated by the hν energy difference. It was observed that by increasing the intensity of

the laser field the number of ATI maxima also increases, whilst their height (intensity of

maxima) decreases with the photoelectron’s energy. However, a plateau (i.e., a region with

approximately the same peak heights) is observed in the photoelectron spectrum, which is

located in the energy range between two and ten times the ponderomotive energy (2Up −
10Up). The appearance of this plateau can be explained by the back-scattering of the ejected

electrons on the residual ion. Another feature of the ATI spectrum is the suppression of the

low order photoelectron peaks with the increase of laser intensity. This property can be

explained with the phenomenon known as the laser induced Stark shift, where the bound

states are dressed with the laser’s electric field. Since the Stark shift has little effect on the

low-lying bound states, but it modifies significantly the higher level energy states, i.e., it

raises the Rydberg and continuum states, the ionization potential is increased. Hence, the

lower part of the n+n′ photon ionization channels will be significantly emptied, resulting in

the decrease of the intensity of low order ATI maxima. Due to this effect, in many occasions

the first peak in the spectrum almost vanishes. Although, by taking into account that

the intensity profile of the radiation pulse varies smoothly in time, for small time windows

the excited states may be Stark shifted into resonance with the ground, therefore the total

suppression of the corresponding peaks is avoided.

Tunneling and over-the-barrier ionization

Until this point in the presented photon-induced processes we assumed hat the laser field

does not modify the binding potential (Coulomb field) of the electron. This is valid until

the intensity of the radiation field does not approach the intensity associated to the electric
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3.1. Photoexcitation and ionization mechanisms

field strength ’felt’ by the bound electron: for instance in the case of the hydrogen atom the

electric field strength of the binding electron EH = e/(4πǫ0a
2
0) ≃ 5.1×1019 V/m corresponds

to the intensity IH = (ǫ0c/2)E
2
H ≃ 3.51 × 1016 W/cm2, where ǫ0 is the vacuum permittivity

and a0 is the Bohr radius of the hydrogen atom (according to the definition of the atomic

unit of electric field strength and intensity: EH = IH = 1).

It was shown [30] that if the intensity of the laser field approaches or exceeds the intensity

associated to the electric field strength of the bound electron an alternating ionization process

takes place. This process can be interpreted classically by taking into account that the

effective potential felt by the bound electron can be obtained by adding the electron-laser

interaction term to the Coulomb potential:

Veff(~r) = VC(~r)− e~r ~E(t). (3.5)

Veff(~r) will differ the most from VC(~r) when the magnitude of the momentary electric field

is the highest: E(t) = ±E0. For the case of the hydrogen atom the form of the modified

potential is illustrated along the oz direction in Figure 3.1.

As one can observe the laser-induced suppression of the binding potential takes place and

a potential barrier is formed. If the frequency of the laser field is sufficiently low, the electron

may escape from the parent ion by tunneling through this barrier. This tunneling process has

the highest probability near the peaks of the radiation field, thus in every halc-cycle tunneling

photoelectrons will be emitted appearing in the spectrum as periodic electron signals. The

process is known as tunneling ionization (TI) and it was observed experimentally first in

1974 by using microwave radiations [31]. The TI mechanism represents one of the basis

concept for understanding the high harmonic generation of ultrashort attosecond pulses (see

the next section) usually obtained for atoms in the gas phase by using coherent radiation

fields in the IR regime (typically when λ ≥ 800 nm).

Figure 3.1: The schematic of the the tunnel ionization mechanism. The blue curve illustrates
the Coulomb potential of the hydrogen atom modified by the electric component of the laser
field. The term describing the interaction between the electron and the external electric field
is given by the dashed (dark gray) line. The electron described by the wave function (red
curve) may tunnel out through the potential barrier created on the rhs of the potential.
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Chapter 3. Laser induced processes in atoms and molecules

Moreover, by further increasing the laser intensity this can reach a critical value when

the height of the potential barrier disappears and the electron wave packet can freely ”flow”

out the parent ion. The process is known as over-the-barrier ionization (OBI) and it occurs

in atomic targets when the intensity of the radiation field exceeds the critical value of

Icrit

[
W

cm2

]

≃ 4× 109 × (Ip[eV])4 Z2, (3.6)

where −Ip is the energy of the bound state and Z is the charge of the parent ion. For the

simplest target, i.e., for the hydrogen atom, the potential barrier is totally suppressed when

Ilaser = IOBI
crit ≃ 1.4× 1014 W/cm2.

The Keldysh parameter

In order to identify the dominant ionization mechanism that occurs during the interac-

tion between atoms/molecules and external radiation fields, Keldysh introduced a laser and

target dependent parameter

γ =

√

Ip
2Up

=
ω

eE0

√

2meIp, (3.7)

which was later named after him, and where the Up = e2E2
0/4meω

2 ponderomotive (quiver)

energy of the ejected (”free”) electron is calculated as the cycle-averaged energy gained by

this from the radiation field having the angular frequency ω = 2πν = 2πc/λ and electric field

amplitude E0. The Keldysh parameter is used to distinguish the intensity regimes associated

with different photoionization processes. When the γ ≫ 1 condition is fulfilled it means that

the quiver energy of the continuum electron is much less then the ionization energy of the

target and the binding potential is not significantly distorted by the radiation field. In this

case the photoemission occurs predominantly via single or multiphoton absorptions. In the

other limit, when γ ≪ 1 the wavelength λ is large (∼ IR waves) meaning that the period

of the laser field T = λ/c is also sufficiently large to favorize the quasi-static tunneling

photoemission. The transition between the two regimes, i.e., around γ ≈ 1, is a smooth one,

since it was observed that by approaching γ to 1 starting from the multiphoton regime the

ATI peaks start to fade out gradually until they almost completely vanish.

It is worth mentioning though, that apart from the laser field’s intensity also the temporal

contrast, the duration and the period of the pulse may play an important role for determine

which photoemission mechanism will be observed in the experiments to be the dominant one.

For instance, it could be a reasonable experimental outcome that even though the intensity

of the incident light is situated in the extremely high region, hence by distorting the Coulomb

potential it would facilitate photoemission via the tunneling process, the measured spectra

will show mainly ATI peaks. This outcome can be easily understood by considering that
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3.1. Photoexcitation and ionization mechanisms

almost all the target systems located in the focal volume will be depleted via multi-photon

processes by the high intensity radiation field before the electric field reaches its peak value

and a potential barrier is created. Hence an ionization saturation occurs below the Icrit value,

which can be impeded by using shorter (i.e., ultrashort) pulses.
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3.2 High Harmonic Generation (HHG)

The high harmonic generation (HHG) process is a special and a possible outcome of the

laser induced ionization, which enjoys a strong interest in the field of attoscience, namely

in the production of high energy (XUV) ultrashort pulses. In this process the laser ejected

electron is driven back by the radiation field to the parent ion, where it is reabsorbed, and

the energy gained from the EM field during the excursion time is emitted in a form of a high

frequency XUV photon (by using an appropriate phase-matching the created photons are

coherently added and XUV attosecond pulses are produced).

The essence of the HHG process can be understood most easily in the semi-classical frame-

work using the three-step-model (TSM) proposed by M. Lewenstein [32]. This model which is

based on the strong field approximation (SFA) and the single active electron (SAE) approx-

imation, states that in the first step the (active) electron escapes the parent atom/molecule

through the potential barrier created by the laser field via the tunneling process. This event

is highly probable to take place near the maximum of the external field and the ejected

electron appears in the continuum at time t with the kinetic energy εk = [~k + ~A(t)]2/2 + Ip,

where ~k is the kinetic momentum (atomic units were considered: ~ = e = me = 1). In

the second step the ionized electron is accelerated in the continuum by the oscillating EM

field, which as it changes its direction drives back the electron to the parent ion, where a

recombination between electron-ion occurs. During this recombination event (third step)

the electron is absorbed and emits its energy gained from the driving field in the form of a

high energy photon.

Harmonic generation is a nonlinear optical process in which the frequencies of the newly

emitted photons - appearing in the measured spectrum - are integer multiples of the ν0

fundamental frequency. In measurements, where monoatomic gas targets are irradiated

with intense monochromatic light pulses due to symmetry considerations only odd integer

multiples of ν0 can be obtained: νHHG = (2n + 1)ν0, where n is a positive integer. This

characteristic feature of the HHG spectra for atomic gas can be explained by taking into

account the following considerations. In each optical cycle two electron trajectories are

responsible for the XUV bursts. The emission of these photoelectrons occurs near the two

consecutive extrema of the radiation field via tunnel effect and the moments of recolissions

with the parent ion are separated by half of the period of the incident field (T/2). In this

way the electric fields of the two intracycle emitted XUV pulses were ”born” with opposite

phases

E
(ω)
1 = A(ω) exp{i(ωt+ ϕ)}

E
(ω)
2 = A(ω) exp{i[ω(t− T/2)] + ϕ+ π}, (3.8)
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3.2. High Harmonic Generation (HHG)

and by using that eiπ = −1 the sum of these two fields results in a net electric field of

E(ω) = E
(ω)
1 + E

(ω)
2 = A(ω)ei(ωt+ϕ)

(
1− e−iωT/2

)
, (3.9)

which vanishes for the case of even ω = 2nω0 harmonics, since (1 − e−iωT/2) = 0. Thus,

in real experiments during the propagation through the active medium these two intracycle

waves having opposite phases will cancel out by destructive interference, whereas those

having approximately the same phases will be constructively enhanced, giving rise to odd

harmonics in HHG spectra obtained for atomic gas targets.
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Figure 3.2: The blue solid lines illustrate the typical regions observed for HHG spectra.
The presented spectrum was obtained for Xenon target by using a 1064 nm wavelength and
3× 1013 W/cm2 intensity laser adapted from [33].

The typical HHG spectrum (see Fig. 3.2) where the measured (or calculated) intensities

are shown at logarithmic scale as a function of harmonic order (H2n+1 = ωn/ω0) have three

distinctive characteristic regions. For lower photon energies (i.e., the first few harmonics) a

rapid decrease of intensity is present. This is followed by a broad plateau of many harmonics

where the intensities are approximately the same showing a relatively slow decrease. The high

energy edge of the HHG spectrum presents an abrupt decrease, where the high harmonics ”die

out” within a few orders. The photon energy where this downturn takes place is referred to

as the cut-off energy of the spectrum, and gives the last harmonic (highest photon energy)

achievable with a relatively accessible intensity. The main goal of recent studies mainly

deals with the extension of the cut-off energy of the HHG spectrum (i.e., obtain the higher

and higher energies confined in an ultrashort pulse) by employing new experimental setups,

which may be consisted of using two- (or) many-colour lasers, or different target systems
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Chapter 3. Laser induced processes in atoms and molecules

(molecules, metallic nanostructures, etc.) The typical cut-off energy obtained for atomic

gasses is around the value 3.17Up + Ip, while for gold nanostructures this could have been

extended even above 10Up + 0.538 W , where the W work function for gold is 5.1 eV [34].

Considering the achieved extensions of the plateau domain and the recent experimental

developments that are able to select a certain harmonic from the train of attosecond bursts,

the HHG opened new perspectives in the production of ultrashort coherent XUV and X-ray

radiations.
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CHAPTER 4.

Photoelectron holography

By the production of high frequency ultrashort laser pulses laser induced photoelectron

holography (PEH) has recently emerged as a promising technique for investigating the in-

ternal structure of laser irradiated atomic systems. This novel tool exploits the interference

between different electronic wave packets (EWPs), which are emitted by the radiation field

into the continuum, and where, due to the presence of the oscillating field, they follow dif-

ferent spatial paths. These different paths will lead to different phases accumulated by the

ejected EWPs, and the resulted phase differences are detectable in the measured photoelec-

tron spectra (i.e., in the angle-resolved momentum distribution of the ejected electrons) as

constructive (maxima) and destructive (minima) interference patterns.

Similarly to the case of its optical analogy, i.e., optical holography [35], the laser induced

photoelectron holography [36] captures information regarding the amplitude and phase of the

scattered waves, for which in the case of PEH the role of the scattering objects are played by

the electrons’ parent ion (atom, molecule). However, in contrast with the traditional electron

holography, where the electron’s are ”fired” from an electron gun of an electron microscope

and maneuvered by optical (imaging) elements, in the case of PEH the electronic wave

packets are the result of some ionization mechanisms induced by an intense (ultrashort)

laser pulse, and are manipulated by the electric component of the same oscillating field.

By taking into account, that PEH is a state-of-the-art technique of the continuously

developing field of laser science, which became experimentally accessible only in the last few

years (first observations were made in 2011 [37]), elaborated theoretical investigations are

desired for the deeper understanding of the underlying processes.

The theory behind the creation of PEH can be represented in the simplest way by employ-

ing the three-step model, according to which, first, the laser irradiated atomic system emits

electronic wave packets into the continuum either by the tunneling or by OBI ionization

process. Second, the ionized electron that appears in the continuum at a nonzero distance

measured from the nuclei is accelerated away from its parent ion, and as the oscillating field

changes its direction, is driven back by this to the vicinity of the ion. Finally, according

to the third step, with a given differential cross section the returned EWP may rescatter

elastically from the parent cores.
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Chapter 4. Photoelectron holography

It has to be mentioned though, that a large portion of photoelectrons will miss the

parent ion and will not interact or rescatter by this. This can be explained simply by the

fact, that the photoelectrons are appearing in the continuum at different phases (different

temporal parts) of the radiation field, then are traveling along different trajectories, and

those electrons, that have larger transverse momenta will simply avoid the interaction with

the ion. Given that the laser initiated continuum electronic waves are fully coherent, in

the simplest scenario, the returning and rescattering electronic waves will form a diffraction

pattern. Since the returning EWP travels in the vicinity of the parent ion, this pattern

encodes the spatial information of the local electrostatic field, which is directly connected

to the structure of the atomic or molecular target. The resulting diffraction pattern can be

used then to recover structural information about the target. This self-imaging technique is

known as the laser-induced electron diffraction (LIED) and it is analogous to the traditional

electron diffraction technique, where high energy electron beams are used to gain structural

information about the irradiated, laboratory-prepared samples. In addition to this, LIED

can also be used as a high-potential tool for resolving structural dynamics of atomic systems.

However, considering that the laser-induced electron diffraction is a strong-field process, in

order to acquire relevant information about the structural dynamics of the irradiated systems,

one has to remove first the influence of the oscillating field from the measured photoelectron

spectrum, which can be done only via laborious procedures.

Alongside the LIED process, recent studies [37, 38, 39] have suggested that the well

distinguishable radial fringe structures appearing in the photoelectron spectra are the con-

sequence of an alternative (laser induced) process, according to which, the crucial role is

played by the phase differences between the EWPs emitted during the same quarter-cycle of

the radiation field, but which follow different paths in the continuum. It was shown [37] that

the observed radial fringe structures are the consequence of the interference of these con-

tinuum EWPs. In [37] it was detailed, that for the appearance of the radial structures, the

interference between two distinct EWPs are mainly responsible: the first one is the scattered

wave, while the second one is an electronic wave, that is associated with a larger transverse

momentum value, which implicitly implies a totally different electron trajectory than the

first one. Due to the larger transverse momentum value the recollision to the parent ion of

the second EWP is greatly reduced or simply entirely avoided.

Similarly to the traditional holography, where two distinct fully coherent electromagnetic

waves are present, i.e., a scattered and a direct wave, in the laser induced PEH a scattered

electronic wave interferes with a fully coherent (un- or weakly scattered) direct wave. Hence,

the process itself can be considered the laser induced photoelectron holography of the atomic

system, and the relevant information about the target may be extracted from the obtained

interference pattern created by the (strongly) scattered and unscattered (or weakly scattered)

wave. In the PEH the former EWP plays the role of the reference wave, whilst the later one

the signal wave.

The photoelectron holography appearing as a secondary process succeeding the primary
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(laser induced) ionization of the target arises as a modulation on the ionization probability

density (or PES) map obtained for the target. Previous investigations [39] demonstrated

that the spatial interference of the EWPs detectable in the photoelectron spectra is the result

of the superposition of wave packets ’born’ approximately at the same time (i.e., during the

same quarter-cycle of the laser pulse), but driven by the oscillating field along different

paths. During the excursion in the continuum, these EWPs accumulate different phases,

which due to the coherent superposition induce the formation of radial ridge structures in

the PES [18, 38, 39, 40, 37, 41, 42, 43, 44, 45, 46].

Using classical trajectory Monte-Carlo simulations [43] the assumption according to which

two distinct, a direct (unscattered) and a scattered [38, 39, 37], EWP is present in the

coherent superposition process was proven to be valid for the case of the hydrogen atom,

where it was shown that the electrons can arrive at a given continuum state with a well

defined momentum ~k along a weakly scattered and a strongly scattered trajectory. The two

distinct trajectories are schematically represented on Figure 4.1.
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Figure 4.1: The schematics of the scattered and direct electron trajectories.

Calculations were made and it was found that the weakly scattered electron, after it had

been driven back by the oscillating field, approached the parent ion to the minimum distance

of 5 atomic units; while the strongly scattered electron approached the core more closely, by

reaching an ∼ 1 a.u. separation distance from this. According to this picture, the weakly

scattered EWPs play the role of the reference waves, while the strongly scattered EWPs are

part of the signal waves, therefore the spatial interference pattern can be interpreted as the

hologram of the irradiated system [37, 43].

It is worth mentioning, that even if both mechanisms of the laser-induced electron diffrac-

tion (LIED) [47, 48, 49, 50, 51] and the photoelectron holography are based on the scatter-

ing of the EWPs during their quiver motion in the oscillating field on the parent ion, in
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the case of the LIED the reference wave is missing. This absence causes the extraction of

structural [47, 48, 49, 50] and temporal [51] information regarding the irradiated atom or

molecule from the PES resulted from the EWP diffraction (LIED) to be achieved only by

laborious procedures [49]. In contrary, due to the existence of a reference wave in the case of

PEH, in principle an easier extraction of structural information is possible. In this case the

presence of the reference EWP leads to a more structured electron momentum distribution

with clearly distinguishable and identifiable interference minima and maxima.

By reviewing the literature of previous experimental [38, 37, 41, 18] and theoretical [43,

52, 53, 44, 45, 46] investigations several aspects of the creation of the photoelectron holo-

grams can be understood. Firstly, it was shown that for a given target the density of the

interference minima is determined by the z0 maximum distance measured from the parent

ion that the liberated electron reached before the rescattering event. The value of z0 can

be directly controlled by the parameters of the driving field, i.e., increasing the wavelength

or the intensity of the laser pulse results in an increased z0 value. Secondly, it was recently

demonstrated [45] for atomic targets that for a fixed driving field the features of the holo-

gram were strongly influenced by the profile of the scattering potential (i.e., by the atomic

species). With real optimism, in the near future it will be possible for experimentalists to

take advantage of this high target sensitivity of the PEH and utilize the measured photo-

electron momentum distribution maps to identify local potentials inside the laser irradiated

samples. It was proven by first principle and classical trajectory calculations [45], that

the phase accumulated by the scattered electron is strongly influenced by the depth of the

binding potential experienced by the rescattering electron along the returning path.

Besides atomic targets, several studies on the photoelectron holography of molecular

targets were also performed [54, 55, 56, 57, 58, 59, 60, 61, 62, 63], a large portion of which

were focusing on smaller atomic systems, such as the H+
2 molecule. The physics behind

the creation of the photoelectron holograms in molecules and the features appearing in the

PES can be more easily understood by investigating less complex targets. The H+
2 molecule

gives us the possibility to study the influence of the internuclear distance and the two-center

interference of the EWPs on the molecular photoelectron holograms.

A significant portion of H+
2 related works [55, 56, 58, 63] investigated the influence of

the molecular axis orientation on the PEH at equilibrium internuclear distance, and found

that the forward scattering photoelectron hologram (both the signal and reference wave

packets being created during the same quarter cycle of the driver pulse) is only weakly

influenced by it. This weak effect was explained by the observation that in the case of small

molecules the electron scattering cross section in the forward scattering direction is mainly

determined by the long-range Coulomb potential [61, 64] and the short-range effects are

repressed by the long range contribution. However, it was later shown that the molecular axis

orientation dependence of the forward scattering photoelectron hologram can be increased

either by using circularly polarized driving fields [57, 58], or by increasing the molecular axis

length [59, 62]. For the backward scattering direction the contribution of the short-range
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part of the molecular Coulomb potential is larger, thus - as it was expected - the backward

scattering PEH (where the signal and reference wave packets were created during different

quarter cycles [54, 61]) is severely affected by the molecular axis orientation [61].

In contrast, investigations on the molecular axis length dependence of the forward scat-

tering photoelectron holography are rather sparse. In [61] the indirect experimental evidence

is presented on the molecular axis length dependence of the PEH. Furthermore, in the frame-

work of a simplified model, where the H+
2 was described by a 2D soft-core Coulomb potential,

this effect was explicitly studied in [59] and [62]. However, in the first study [59] it is only

marginally discussed, while in the second one [62] it is investigated in details only at large

internuclear distances (in the region of the charge-resonance enhanced ionization).

In the above outlined context, the second, principal part of the present thesis is mainly

dedicated to the investigation of the molecular axis length dependence of the forward scat-

tering photoelectron hologram, where special attention is accorded to the physics of the

molecular axis length dependence of the PEH. More precisely, this work concentrates mainly

on the investigation of photoelectric holograms appearing as a result of the interaction be-

tween ultrashort XUV pulses and the H+
2 target. The main goal was to acquire valuable

knowledge regarding how the geometry (the internuclear distance) of the simplest molecule

influences the nature of the HM pattern, and to identify the multi-center effects of the

molecular binding potential on the holograms, as outlined in the second part of this thesis.
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CHAPTER 5.

Theoretical methods for investigating

laser induced electron dynamics

In order to follow our line of inquire, in the following, the two most widely preferred

theoretical approaches - used for single active electron calculations - will be briefly presented

and each of these theoretical descriptions will be supplemented with results obtained by

detailed calculations applied on the simplest target system, i.e., the hydrogen atom. The

first approach is a semi-classical method, which is based on the strong field approximation

(SFA) and where an extension of the simple SFA [32] will be concisely discussed. This

method is usually a favored choice due to its simplicity (i.e., it implies computationally cheap

calculations) when tunneling ionization and high harmonic spectra have to be calculated,

but it is not a convenient approach for exact calculations regarding the ionization rates and

electron wave packet dynamics. For these later processes, the second class of methods can be

employed, that consists of calculations based on the numerical solution of the time-dependent

Schrödinger equation (TDSE). Within the TDSE calculations two different procedures will

be discussed, namely the direct and the iterative solution of the TDSE, both using a grid

representations of the wave function in the momentum space.

5.1 Semi-classical approaches: Strong Field Approxi-

mation methods

According to the semi-classical picture of the Strong Field Approximation (SFA) [32],

when the period of the intense laser field is sufficiently large and its electric field component

reaches one of its extrema values (minimum or maximum), due to the high external field

strength the deformation of the Coulomb field takes place and a potential barrier is created;

through which the active bound electron tunnels out and appears in the continuum at time

t′ with the energy

E ~P(t′) =

[

~P + ~A(t′)
]2

2
+ Ip. (5.1)
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~P is the canonical momentum, and by considering atomic units (q = −|e| = −1; ~ = 1)

the following relation was considered: −q ~A(t′) = ~A(t′) = −
∫ t′

−∞
~E(t

′′

)dt
′′

. By entering

the continuum the electron is treated semi-classically, where the electronic wave function

accumulates a phase from the oscillating field, and after the excursion time the electron

recollides with the parent ion by being reabsorbed on the ground state of the atom/molecule.

The outcome of the reabsorptions are the production of attosecond high harmonic bursts.

The time-dependent dipole moment of the electron is used to characterize these laser induced

tunneling emission and reabsorption events [32, 65]:

~d(t) = −i
∫ t

t0

dt′
∫

d~k d∗rec,~r(
~k + ~A(t)) exp

[

−iS0(~k, t, t
′)
]

dion,~r(~k + ~A(t′), t′) + c.c., (5.2)

where the second part c.c. stands for the complex conjugate of the first part, the substitution
~P = ~~k = ~k (using atomic units ~ = 1) was considered. The physical interpretation of Eq.

(5.2) is the following. First, the electron via the ionization process is ejected from the

|ϕ0〉 ground state to a continuum state |Ψ~k〉 with the probability amplitude for make the

transition at time t′: dion,z(~k + ~A(t′), t′) = 〈Ψ~k|Ûlaser(t
′)|ϕ0〉 = 〈Ψ~k|zE(t′)|ϕ0〉. Second, the

wave function of the laser driven electron is propagated until the time t in the continuum

by neglecting the effects of the Coulomb potential during the short time interval between t′

and t, during which the wave function acquires a phase factor of exp
[

−iS0(~k, t, t
′)
]

, where

the S0 quasi-classical action is given by the following expression

S0(~k, t, t
′) =

∫ t

t′
dt

′′

{[

~k + ~A(t
′′

)
]2

/2 + Ip

}

. (5.3)

The above quantity describes the motion of freely moving electron in the laser field with a

constant asymptotic momentum ~k. In the last step the continuum electron recombines at

time t with the parent ion and it gets reabsorbed on its initial ground state with the proba-

bility (transition) amplitude d∗rec,z(
~k + ~A(t)) = 〈φ0|−z|Ψ~k〉. Usually for the |Ψ~k〉 continuum

states the simple plane waves or the more accurate Volkov states are used.

Since the Eq. (5.2) implies the integration of a highly oscillating function of time, i.e. the

exponential form of the semi-classical action, which from the numerical point of view repre-

sents a hard task, many calculations are restricted to the so called saddle-point calculations,

where only the stationary points of S0 are taking into account in the temporal integration.

This approach can be considered valid until the major contribution to the integral over ~k

are coming from these ~kst stationary points satisfying the equation

∇~kS0(~k, t, t
′)|~k=~kst

= 0. (5.4)

By considering that ∇~kS0(~k, t, t
′) gives the difference between the position of the freed elec-

tron at time t and t′, i.e., ∇~kS0 = ~r(t) − ~r(t′) it follows that the stationary points of S0

correspond to those ~k values for which the electron born at time moment t′ is redirected to

39



Chapter 5. Theoretical methods for investigating laser induced electron dynamics

the same position by the laser field at time t before the reabsorption event.

5.1.1 Theory and Results: SFA+ approach for HHG calculations

Until this point within the framework of the simple SFA only the recollision to the ground

state was considered, however during the recapture mechanism also the other bound states

may play a not negligible role. Moreover, due to the presence of the external field depending

on the strength of its electric component the ground and the bound states may be Stark-

shifted. In order to take into account these later considerations an extension of the SFA, the

SFA+ model, will be shortly discussed, where the saddle-point procedure of the simple SFA

is omitted, and the starting point of inquire consists in writing the i∂tΨ(t) = [Ĥ0+U(t)]Ψ(t)

TDSE using the Green propagator formalism. By rearranging the terms in the TDSE as

(

i
∂

∂t
− Ĥ0

)

Ψ(x) = Û(x)Ψ(x) (5.5)

on the lhs one ontains a linear operator D̂ = i∂t − Ĥ0, while on the rhs Û(x)Ψ(x) is taken

as the source term. Here the x variable denotes all the three spatial and the one temporal

coordinate, i.e., x := {~r; t} The solution of this type of equations may be given as:

Ψ(x) = Ψ0(x) +

∫

d4xG+(x, x′)U(x′)Ψ(x′), (5.6)

where the G+(x, x′) function is the Green propagator, which satisfies the equation (i∂t −
Ĥ0)G

+(x, x′) = δ4(x − x′). By substituting for Ĥ0 the E0 ground energy and using the

Ulaser(~r; t) ≃ U(t) dipole approximation, the coordinate dependence of the Green propagators

will not be taken into account, hence only the following two forms of equations should be

solved:

[i∂t − E0]G+
0 (t, t

′) = δ(t− t′) ⇒ G+
0 (t, t

′

) = −iθ(t− t′) exp{−i(t− t0)E0}
[
i∂t − E~k(t)

]
G+(t, t′) = δ(t− t′) ⇒ G+(t, t

′

) = −iθ(t− t′) exp
{

−i
∫ t

t′
E~k(t

′′

)dt
′′

}

,

where E~k(t
′′

) = [~k+ ~A(τ)]2/2 is the instantaneous kinetic energy of the ejected electron in the

radiation field, while θ(t−t′) is the step function [θ(t−t′) = 1 if t ≥ t′ and equals 0 otherwise].

Within the present approach the TDSE can be given using the Green’s propagators as follows

− i|Ψ(t)〉 = G+
0 (t, t0)|Ψ(t0)〉+

∫ t

t0

dt′G+(t, t′)U(t′)G+
0 (t

′, t0)|Ψ(t0)〉, (5.7)

where U(t) = ~A(t) · ~k + ~A2(t)/2 is the electron’s interaction with the electromagnetic field

in the velocity gauge and dipole approximation. The HHG spectrum can be computed by

evaluating the mean value of the z component (linearly polarized field in the oz axis) of the
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â = −(q/me)∂Vc/∂z = ∂Vc/∂z dipole acceleration operator (me = −q = 1):

a(t) = 〈Ψ(t)|â|Ψ(t)〉 ≃ 〈Ψ(t)|B̂â|ĈΨ(t)〉+ c.c. (5.8)

where the HHG pulses are produced via continuum→ bound transitions, with B̂ =
∑∞

b |ϕb〉〈ϕb|
and Ĉ =

∫
d~k|~k〉〈~k| being the projection operators onto the bound and continuum states,

respectively. By taking into account that the sum of the two projection operators equals

the identity operator Î = B̂ + Ĉ and the commutation relation
[

B̂, Ĉ
]

|Ψ〉 = 0 next to the

equalities B̂2 = B̂, Ĉ2 = Ĉ holds, after introducing the identity operator (B̂ + Ĉ) in front

of each quantity in Eq. (5.7) one obtains the projections onto the bound and the continuum

states

− iB̂|Ψ(t)〉 = G+
0 (t, t0)|Ψ(t0)〉+

∫ t

t0

dt′B̂G+(t, t′)B̂U(t′)B̂G+
0 (t

′, t0)|Ψ(t0)〉 (5.9)

−iĈ|Ψ(t)〉 =

∫ t

t0

dt′ĈG+(t, t
′

)ĈU(t′)B̂G+
0 (t

′, t0)|Ψ(t0)〉. (5.10)

In the deduction of the above equations the commutation relation [Ĥ0, B̂]|Ψ(t)〉 = 0 and

the good approximation of [Ĥ, Ĉ]|Ψ(t)〉 ≃ 0 were also considered. On the other hand, it is

worth pointing out that the B̂U(t)B̂ operator describes the atomic excitations (note that

in the simple SFA there is no ground state dressing, i.e., B̂U(t)B̂ = 0), while ĈU(t′)B̂

corresponds for the ionization of the electron. By using the relations in Eqs. (5.9)-(5.10)

and following some mathematical steps the acceleration can be deduced as the sum of two

interfering contributions

a(t) ≃ 〈Ψ(t)|B̂âĈ|Ψ(t)〉+ c.c. = ab(t) + ad(t) + c.c., (5.11)

where ad(t) is associated with the transition from the continuum to the field dressed state,

while ab(t) describes the dynamics of the transition between the continuum and the bare

atomic ground. The later can be obtained for a well defined momentum ~k solving the

deducible differential equation

dab(~k; t)

dt
= i
[

E0 − E(~k; t)
]

ab(~k; t) + iCF 〈ϕ0|â|~k〉U(~k; t)〈~k|Vc|ϕ0〉. (5.12)

In the above equation for the case of the hydrogen atom the Coulomb potential Vc = −1/r,
the Coulomb factor CF = [2Z2/n2E0] (n = 1, Z = 1), and E(~k, t) = k2/2 + U(~k; t) where

U(~k; t) = A(t)kz + A2(t)/2.

Finally, the net acceleration is calculated (Fig. 5.1) by evaluating the integration of the

ab(~k; t) contributions over all the momentum space:

a(t) = −
∫

d~k
k2/2− E0
∆s(kz)

ab(~k, t) + c.c., (5.13)
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where in the denominator appears the energy levels shift, which is obtained as the time aver-

age of the interaction term over the collision time ∆s(kz) = 〈U(t)〉 = δt−1
s

∫ t

t−δts
U(kz; t

′)dt′.

Here the evaluation of the rescattering time δts can be roughly approximated by dividing

the size of the returning EWP by its velocity at the rescattering instance: considering the

initial velocity of the tunnel ionized electron vi ≃
√

2|E| and multiplying it with the typical

time of excursion in continuum τ ≈ (3/4)T = (3/4)2π/ω0 leads to the approximated size of

the wave packet (viτ). Hence the time lapse of the rescattering is given by the relation

δts ≈
viτ

vrecoll
≃ 3π

2ω0

√

|E0|
3.17Up

, (5.14)

where the reabsorbed electrons have the approximate recolliding velocity of vrecoll ≈
√
2× 3.17Up.

Figure 5.1: The electric field component of the laser field (green curve), and the calculated
dipole acceleration (red curve) as a function of time according to Eq. (5.13).

As mentioned earlier in this section the HHG spectrum can be directly calculated from

the Fourier transform of the dipole acceleration, which by using Larmor’s formula will give

the total power radiated by the non relativistic point charge q as it accelerates:

P (ω) =
q2

6πǫ0c3
F{a(t)} = q2

6πǫ0c3
aF (w). (5.15)

The differential equation (5.12) was solved by using a fourth-order Runge-Kutta method,

the integral in Eq. (5.13) evaluated with the Simpson method for different laser pulse

wavelengths, intensities, and pulse shapes (sinusoidal, Gaussian), and the spectra calculated

according to the Larmor’s formula are shown in Figure 5.2.

In subfigures Figure 5.2/(a)-(b) it can be observed that by increasing the amplitude of

the radiation field strength also the plateau of the spectra increases. This is explained by

the fact that for larger E0 the electron acquires higher energy from the laser field prior to

the recollision event. By comparing the subfigures 5.2/(a) and (b) one can observe that,

when the wavelength is larger [i.e., 800 nm in subfigure (b)] higher harmonics are achieved,
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since the cut-off energy of the 800 nm occurs between the 130 and 140 harmonic orders,

whilst in the first case [i.e., 600 nm in subfigure (a)] this is located between low orders, 50

and 60. This dependence on the wavelength is further evidenced by plotting in subfigure

5.2/(c) the HHG spectra for fixed field intensity (electric field amplitude E0 = 0.2 a.u.) but

for different central wavelengths λ. It can be obviously observed that by increasing λ the

electron’s ponderomotive energy Up also increases, since the high energy electrons are driven

at larger maximum distance from the parent ion, thus there excursion time is increased, and

they can gain more energy from the radiation field. 1

Figure 5.2: High harmonic spectra for the hydrogen atom using sinusoidal envelope pulses
(a)-(c) and a Gaussian profile beam (d) for different laser field parameters. Sub-figures (a)
and (b) show the cut-off order dependence of the plateau on the electric field’s amplitude
for a 6 cycle pulse having the central wavelength of 600 nm and 800 nm, respectively. On
subfigure (c) for a fixed intensity the HHG spectra dependence as a function of radiation
wavelength is illustrated. In subfigure (d) the harmonic response of a 64 cycle Gaussian
beam is shown (E0 = 0.14 a.u.; λ = 1040 nm).

1The results obtained by the implementation of the SFA+ method were presented and discussed at several
international scientific meetings (conference poster presentations):
G. Zs. Kiss, K. Kovács, V. Toşa, Laser - atom interaction beyond the strong field approximation model,
Processes in Isotopes and Molecules (PIM) 11th International Conference, Cluj-Napoca, Romania, 27-29
Sep (2017).
G. Zs. Kiss, V. Toşa, K. Kovács, Theoretical Investigation Beyond the Strong Field Approximation Model,
TIM17 Physics Conference, Timioara, Romania, 25-27 May (2017).
G. Zs. Kiss, K. Kovács, V. Toşa, Numerical investigations beyond the SFA model, MEDEA Summer School:
Ultrafast Dynamics with Intense Radiation Sources, Crete, Greece, 18-22 Oct. (2016).
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5.2 Methods for the solution of the time-dependent

Schrödinger equation (TDSE)

The most accurate results for the investigation of laser-matter interactions can be ob-

tained by solving the time-dependent Schrödinger equation (TDSE). Since, even for the

simplest case - hydrogen atom in external radiation field - there is no analytical solution,

the only possible way remains the numerical integration of TDSE. Due to the high computer

time and memory requirements needed by the numerical time propagation of the time de-

pendent wave function (TDWF), this method is principally employed when the single active

electron approximation may be safely considered. For multi-electron systems which inter-

act with intense fields other methods should be employed, which are mostly based on the

time-dependent density functional theory (DT-DFT).

In this section, first, the various types of wave function representations will be presented,

which will be followed by a short overview of different time propagation methods that can

be applied for the electronic TDWF. In the section’s last part two distinct methods will be

given for the numerical solution of TDSE: a direct and the iterative solution of the Shrödinger

equation, both calculating the wave function in momentum space. The benchmark of the

methods will be presented for the simplest target, the hydrogen atom.

5.2.1 Representation of the wave function

Spectral representation

When the solutions of time-dependent Schrödinger equation should be obtained it is a

well established method to express the unknown wave function describing the particle and

the operators assigned to physical quantities in terms of a complete set of functions, i.e.,

so-called basis-functions. Considering this, the wave function in coordinate space may be

expressed as

Ψ(~r; t) =

∞∑

m=1

ϕm(~r)cm(t) (5.16)

where the {ϕm} represent the basis functions, and the cm(t) expansion coefficients can be

calculated by multiplying the above expression with ϕ∗
n(~r) and integrating over ~r as follows:

∫

~r

ϕ∗
n(~r)Ψ(~r; t)d~r =

∞∑

m=1

cn(t)

∫

~r

ϕ∗
n(~r)ϕm(~r)d~r =

∞∑

m=1

Snmcm(t). (5.17)

The Smn values are the elements of the so-called overlap matrix built from the basis-functions,

and in cases when the used {ϕn} functions form an orthonormal set, i.e., Smn = δmn the

calculation of the expansion coefficients is reduced to

cn(t) = 〈ϕn|Ψ(t)〉 =
∫

~r

ϕ∗
n(~r)Ψ(~r; t)d~r. (5.18)

44



5.2. Methods for the solution of the time-dependent Schrödinger equation (TDSE)

From the computational point of view, by taking into account the impossibility of han-

dling infinite number of basis functions, the expansion of the exact wave function has to be

truncated at N <∞, and the wave function written as

Ψ(~r; t) ≃
N∑

n=1

ϕn(~r)cn(t), (5.19)

This approach is called as a finite basis representation (FBR), when the dynamics taking

place in the Hilbert space, which is complete forN →∞, is reduced to anN -dimensional sub-

space. The subspace needs to be ”complete” enough in order to represent the whole dynamics

of the system, which can be achieved by choosing wisely when the appropriate set of the basis

functions is selected, and by increasing the dimensionality N of the subspace till convergence

in the dynamics is reached. Using the projection operator P̂N = P̂ †
N =

∑N
n=1 |ϕn〉〈ϕn| which

projects the quantum state |Ψ〉 of the Hilbert space onto the N -dimensional subspace as

|Ψ〉N → P̂ |Ψ〉, and the Hamiltonian as ĤN → P̂NĤP̂
†
N , the time-dependent Schrödinger

equation reads as:

i
∂

∂t
|Ψ(t)〉N = ĤN |Ψ(t)〉N ⇒

i
∂

∂t

N∑

n=1

|ϕn〉〈ϕn|Ψ(t)〉 =
N∑

l=1

N∑

m=1

N∑

n=1

|ϕl〉Hlm(t)〈ϕm|ϕn〉〈ϕn|Ψ(t)〉 (5.20)

where the notation

Hlm = 〈ϕl|Ĥ(t)|ϕm〉 (5.21)

was used. By projecting Eq. (5.20) onto |ϕk〉 and using the expression (5.18) next to the

orthonormal condition

〈ϕk|ϕn〉 = 〈ϕk|Î|ϕn〉 =
∫

d~r〈ϕk|~r〉〈~r|ϕn〉 =
∫

d~rϕ∗
k(~r)ϕn(~r) = δkn (5.22)

one can obtain a set of coupled differential equations for the ck(t) expansion coefficients

i
d

dt
ck(t) =

N∑

m=1

Hkm(t)cm(t), (5.23)

By calculating the ck(t) time-dependent coefficients the solution of the TDSE is obtained

according to the expression (5.19), where the ϕk(~r) functions can be, in principle, any kind

of functions that form a basis: e.g., eigenfunctions of the Ĥ0 Hamiltonian, Slater type

orbitals (STO), or analytical polynomial functions such as the Laguerre, Hermite, Lagrange

or Legendre polynomials. A favored choice is the use of the eigenfunctions of the field-

free Hamiltonian (ψk ≡ ϕk), since in this case the matrix elements of the Hamiltonian are
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Chapter 5. Theoretical methods for investigating laser induced electron dynamics

calculated as

Hkm(t) = 〈ψk|Ĥ0 + Ûint(t)|ψm〉 = ǫmδkm + 〈ψk|Ûint(t)|ψm〉, (5.24)

where ǫm is the eigenenergy corresponding to the |ψm〉 eigenstate of Ĥ0, and the contribu-

tions from the field-free part are obtained exactly.

The discrete variable representation (DVR) method is related to the spectral represen-

tation of the wave function. In coordinate space a wave function in its spectral representation

is written as

Ψ(~r) = 〈~r|Ψ〉 =
N∑

m=1

〈~r|ϕm〉〈ϕm|Ψ〉 =
N∑

m=1

am〈~r|ϕm〉, (5.25)

where the expansion coefficients

am = 〈ϕm|Ψ〉 =
∫

〈ϕm|~r〉〈~r|Ψ〉d~r (5.26)

describe the wave function, and the {|ϕm〉} is an orthonormalized basis of Hilbert space

(usually it is complete when N →∞). The basis functions satisfy the orthonormal relation:

〈ϕm|ϕn〉 =
∫

〈ϕm|~r〉〈~r|ϕn〉d~r = δnm. (5.27)

Using the Shrödinger equation one may derive from the Rayleigh-Ritz variational principle

the following matrix eigenvalue problem:

N∑

m=1

Ĥnmam = anE, (5.28)

which can be solved once the Ĥnm = 〈ϕn|Ĥ|ϕm〉 matrix elements have been calculated.

Since N < ∞ the eigenvalues of Eq. (5.28) will always represent an upper bound to the

true solution for N → ∞. The main idea of the DVR is to choose a basis for which the

overlap integrals in (5.27) can be evaluated exactly by numerical quadratures. The classical

orthogonal polynomials up to order N − 1 fulfill this requirement. For each of these basis

sets, there is an associated Gaussian quadrature of order N in which the product of two of

these functions can be integrated exactly.

First let the integration be only in one dimension (~r → x). It can be easily proven that

the product of two of these functions is at most of (2N−2)th order, which may be integrated

exactly by an N th order quadrature at grid points xk with weights wk. According to this

idea, the integral (5.26) for the case of one dimension is replaced with the sum:

ãm =

N∑

j=1

wj〈ϕm|xj〉〈xj |Ψ〉, (5.29)
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5.2. Methods for the solution of the time-dependent Schrödinger equation (TDSE)

and the DVR remains orthonormal under the quadrature rule 〈ϕm|ϕn〉 =
∑N

j=1〈ϕm|xj〉〈xj|ϕn〉 =
δnm. An important advantage of these representations is that the potential operator matrix

is diagonal

V̂nm = 〈ϕm|V̂ |ϕn〉 =
∫

ϕ∗
m(x)V (x)ϕn(x)dx ≈

N∑

j

wjϕ
∗
m(xj)V (xj)ϕn(xj). (5.30)

For the case {ϕm(x)} → {fi(x)}, where fj(xi) = δij/
√
wi, while the {fi(x)} DVR basis

remains orthonormal, since

〈fi|fj〉 =
∫

f ∗
i (x)fj(x)dx

!
=

N∑

m=1

wmf
∗
i (xm)fj(xm) = δij. (5.31)

By introducing Eq. (5.29) into the one dimensional case of Eq. (5.25) one obtains for the

1D wave function the following expression

Ψ(x) = 〈x|Ψ〉 =
N∑

m=1

ãm〈x|ϕm〉 ≈
N∑

m=1

N∑

j=1

wj〈x|ϕm〉〈ϕm|xj〉〈xj |Ψ〉. (5.32)

From here by imposing that 〈x|Ψ〉 =
∑N

j=1〈x|fj〉〈fj|Ψ〉 the DVR basis functions are obtained

as fj(x) =
√
wj

∑N
m=1〈x|ϕm〉〈ϕm|xj〉, and the wave function simply expressed as

Ψ(x) = 〈x|Ψ〉 =
N∑

j=1

〈x|fj〉〈fj|Ψ〉 =
N∑

j=1

Ψ̃jfj(x), (5.33)

where the Ψ̃j = 〈fj|Ψ〉 coefficients are connected to the values of the wave function via

Ψ̃j =
√
wjΨ(xj). The coefficients of the basis functions fj give the values of the wave

function at the grid points in coordinate space, which are the quadrature points of the

underlying Gaussian quadrature. A consequence of this, is that the coordinate operator is

diagonal in the DVR basis:

〈fi|x̂|fj〉 = δijxi. (5.34)

Such a DVR basis is efficiently represented by an interpolating polynomial, which for a given

order is unique and can be expressed by using Lagrange polynomials:

Pi(x) =
∏

j 6=i

x− xj
xi − xj

, with Pi(xj) = δij, (5.35)

and fj(x) = Pj(x)/
√
wj . The main advantage is that the potential matrix will remain

diagonal within the accuracy of the quadrature approximation

Vij = 〈fi|V̂ |fj〉
!≈ V (xi)δij , (5.36)
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and the action of a linear operator, e.g., an nth order derivation operator of the form D̂ =

∂n/∂xn, on the wave function can be calculated in an efficient way as

D̂Ψ(x) =
∂nΨ(x)

∂xn
=

N∑

j=1

Ψ̃j
∂nfj
∂xn

(x), (5.37)

since the action of D̂ (e.g., the derivatives) on the basis functions have to be computed only

once at the start of the time propagation of the TDSE.

Grid representation

The grid methods are related to the spectral representation (presented in the previous

subsections) in the sense that for the basis functions the δ(~r′ − ~r) Dirac delta functions can

be introduced, and since the ~r coordinates are continuum variables, the wave function is

given in the integral form as

Ψ(~r) =

∫

d~r′ Ψ(~r
′

)δ(~r′ − ~r). (5.38)

In real physical systems the Ψ(~r) wave function describing an electron, an atom, or a group

of atoms has an infinite extent and an exponentially decaying behavior at infinities. This im-

plicitly means that practically the wave function itself is mainly constraint in a finite volume

around the nuclei. Resulting from the interaction with an external radiation field the wave

function spreads out in the space and reaches far distances measured from the origin (the cen-

tral of mass of the target system). However, this extent of the laser driven wave function can

be estimated by knowing the field’s parameters. Accordingly, in computer simulations where

handling infinities is impossible, the configuration space need to be truncated at certain va-

lues: e.g., when Cartesian coordinate representation is used the ~r → {x, y, z} coordinates are
chosen from the well defined intervals x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax]. These

considered intervals should take into account the laser induced dynamics of the system, as

already pointed out a few lines earlier, while the used truncations will mean that the whole

dynamics is investigated inside a simulation ”box” or grid. Not only the size of the grid, but

also the density (the distance between the gridpoints) can play a crucial role in wave packet

dynamics, since the higher components of the wave function can be resolved by using higher

grid densities. If both the size and density of the simulation grid is the appropriate one (the

calculated wave functions converged), one may safely consider the use of wave function’s

grid representation at this given set of gridpoints,

Ψ(~r)→ Ψ ≃ [Ψ(r1),Ψ(r2), . . . ,Ψ(rN)]
T (5.39)

where the r1, r2, . . . , rN points are usually distributed on an equidistant grid2.

2However, in principle the gridpoints can be placed in any fashion inside the simulation box.
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Next to the wave function the Hamiltonian of the system should be also discretized,

which depending on the chosen gauge and the nature of the problem, typically contains

operators depending only on the coordinate itself, or operators which imply first or second

order derivations. One of the main advantage of the grid approach is that the coordinate

operators and any function of it can be expressed by simple diagonal matrices. However, the

representation of operators containing any order of derivation is not straightforward, and

the nth order derivative of the wave function in a given point ri can be approximated by

the values of the wave function in the neighbouring gridpoints: {Ψ(ri±1),Ψ(ri±2), . . . }. This
approximations can be done within the framework of the finite difference method developed

by Euler.

In this simple and frequently used finite difference (FD) method the coordinates are

placed on an equally-spaced grid

ri = r1 + (i− 1) ·∆r, i = 1, N, (5.40)

where the grid spacing is defined as ∆r = (rN − r1)/(N − 1). In order to evaluate the

derivation of the wave function in a given ri gridpoint, first the Taylor expansion of Ψ

around ri evaluated in the neighboring points is employed

Ψ(ri+1) = Ψ(ri) + δrΨ
′

(ri) +
δr2

2
Ψ

′′

(ri) +
δr3

6
Ψ

′′′

(ri) + . . .

Ψ(ri−1) = Ψ(ri)− δrΨ
′

(ri) +
δr2

2
Ψ

′′

(ri)−
δr3

6
Ψ

′′′

(ri) + . . . (5.41)

By subtracting the above two equations and using the discrete value ∆r ← δr, the first order

derivation of the wave function in the ri gridpoint can be deduced as

Ψ
′

(ri) =
Ψ(ri+1)−Ψ(ri−1)

2∆r
−O(∆r2Ψ′′′

(ri)), (5.42)

whilst by adding them together, the second order derivation is obtained as a three point

central difference formula:

Ψ
′

(ri) =
Ψ(ri+1)− 2Ψ(ri) + Ψ(ri−1)

∆r2
−O(∆r4Ψ(4)(ri)). (5.43)

As one can see, these two operators can be represented by tridiagonal matrices, which

from the numerical point of view means that the amount of computations needed for differ-

entiating the wave function is significantly reduced. However, the accuracy of this method is

a low one. This can be improved either by increasing the grid density (i.e., decreasing ∆r),

or by using higher order formulas (i.e, five, seven, nine, etc), which on the other hand will

diminish the sparseness of the Hamiltonian matrix.
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5.2.2 Temporal propagation algorithms for the wave function

The time evolution of a quantum system is described by the Ψ(~r)→ Ψ(~r; t) time depen-

dent wave function, which is governed by the time-dependent Shrödinger equation (TDSE)

i
∂

∂t
Ψ(~r; t) = Ĥ(t)Ψ(~r; t), (5.44)

where atomic units [~ = e = me = 1/(4πǫ0) = 1] were used, Ĥ(t) is the time-dependent

Hamiltonian of the system, and the initial state of the wave function Ψ(~r; t = 0) ≡ Ψ0(~r) is

usually known (or in certain circumstances it has to be determined as well). By using the

assumption that in a short time interval (t, t′ = t+ δt) the Hamiltonian does not change too

much, i.e., δĤ(t) ∼ 0, the formal solution of the TDSE on this small interval reads as:

Ψ(~r; t′ = t + δt) = Û(t′, t)Ψ(~r; t) = e−i(t′−t)Ĥ(t)Ψ(~r; t), (5.45)

where Û(t′, t) = Û(t + δt, t) = exp{−iĤ(t)δt} is the evolution operator, that describes the

time evolution of the wave function.

The widely used temporal propagation methods differ from each other by the way they

approximate the evolution operator. In the following a few of these commonly used methods

will be concisely given.

Explicit and implicit Euler methods

The starting point of this method consists in the Taylor expansion of the evolution

operator

Û(t +∆t, t) ≃ exp
(

−i∆tĤ(t)
)

=

∞∑

n=0

1

n!

(

−i∆tĤ(t)
)n

. (5.46)

By retaining only the first order term from this Taylor expansion one obtains the Euler

propagator form for Û :

Û(t+∆t, t) ≈ Î − i∆tĤ(t) (5.47)

This scheme is referred to as the explicit (or forward) Euler method since the wave function

at time t + ∆t is obtained explicitly from the wave function at a previous time moment t.

Applying Eq. (5.47) on the wave function one obtains:

Ψ(~r; t+∆t) = Ψ(~r; t)− i∆tĤ(t)Ψ(~r; t) +O(∆t2Ĥ(t)2) (5.48)

The main advantage of this approach lies in its simplicity. Although, it also has several

disadvantages: it is unstable (i.e., if ∆t is not sufficiently small the high energy components of

the wave function tend to blow up exponentially), it is not unitary (i.e. it does not conserves

the norm of the wave function), which makes it unfeasible for application. This instability

can be improved by considering the inverse time propagation from the time t+∆t to t, and
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the unitary property of the evolution operator Û(t+∆t, t) = Û(t, t+∆t)−1 = Û(t, t+∆t)†.

Û(t, t+∆t)Ψ(~r; t+∆t) = Ψ(~r; t)⇒

Ψ(~r; t+∆t) =
[

Î + i∆tĤ(t)
]−1

Ψ(~r; t) (5.49)

The above expression is known as the implicit (or backward) Euler method, which gives a

numerically more stable approach than the previous scheme, although computationally it is

more expensive since in every time propagation step it involves a matrix inverse calculation.

Crank-Nicolson (CN) scheme

Another preferred implicit propagation scheme is the Crank-Nicolson (CN) approach, for

which the unitary time propagation is obtained by combining a forward and a backward

propagation to an intermediate state at t+∆t/2:

Ψ

(

~r; t+
∆t

2

)

= e−i∆t
2
H(t)Ψ(~r; t)

Ψ

(

~r; t+
∆t

2

)

= ei
∆t
2
H(t+∆t)Ψ(~r; t+∆t) (5.50)

By assuming that H(t) ≈ H(t + ∆t), and performing the Taylor expansion for both the

operators of Eq. (5.50), the CN time propagator is obtained as

Ψ(~r; t+∆t) ≃ ÛCN (t +∆t, t)Ψ(~r; t) =

[

Î − i∆t
2
Ĥ(t)

]

[

Î + i∆t
2
Ĥ(t)

]Ψ(~r; t). (5.51)

The main advantage of the CN approach is that it is unconditionally stable and unitary.

Though, its main drawback feature is that each time step requires the calculation of the

matrix inverse
[

Î + i(∆t/2)Ĥ(t)
]−1

, which is a computationally time consuming procedure.

Lie-Trotter-Suzuki product formula (LTSPF) and Split-operator method

The main idea behind this method lies the division of the Hamiltonian into two parts

Ĥ(t) = Ĥ1+Ĥ2, where Ĥ1 and Ĥ2 not necessarily commute. In the first order approximation

the evolution operator Û(t, t+∆t) = exp{−i∆t(Ĥ1 + Ĥ2)} reads as

Û1(t, t +∆t) = e−i∆tĤ1e−i∆tĤ2 , (5.52)

while in the second order is given by

Û2(t, t+∆t) = ÛT
1

(

t, t+
∆t

2

)

Û1

(

t, t+
∆t

2

)

=

= exp

(

−i∆t
2
Ĥ2

)

exp
(

−i∆tĤ1

)

exp

(

−i∆t
2
Ĥ2

)

. (5.53)
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Even higher order approximations can be introduced for the LTSPF approach, however for

now we may stop at this level without discussing the higher order terms, since already the

second order is unconditionally stable and unitary.

The second order of the LTSPF is referred to as the split-operator method, where usually

the time dependent Hamiltonian is partitioned into a part which contains the momentum of

the target (Ĥ~p) and a second part which contains operators depending only on the coordinate

(Ĥ~r). A straightforward partitioning choice using coordinate representation is the kinetic

energy operator term and the second term containing all potential energy operators: Ĥ =

T̂ + V̂(t), i.e., Ĥ1 = T̂ and Ĥ2 = V̂(t).
According to this approach, the split-operator propagator has the following form

Ûsplit(t+∆t, t) = e−i∆t
2
V̂(t)e−i∆tT̂ e−i∆t

2
V̂(t) (5.54)

which is applied on the Ψ(~r; t) wave function according to the following steps: (i) first,

the rightmost diagonal e−i∆t
2
V̂(t) is applied on Ψ(~r; t); (ii) the obtained wave function is

transformed into momentum space by using fast Fourier Transform (FFT); (iii) the diagonal

e−i∆tT̂ in momentum space is then applied on the momentum space wave function; (iv) the

new momentum space wave function is transformed back into coordinate space; (v) finally,

the leftmost e−i∆t
2
V̂(t) diagonal is applied.
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5.2.3 Direct solution of the TDSE (in momentum space)

The most accurate results can be achieved by the direct solution of the TDSE [66], i.e.,

by the temporal propagation of the wave function. The time-dependent wave function which

satisfies the TDSE

i
∂

∂t
Ψ(~r; t) =

[

P̂2

2
+ Ûint(t) + V (~r)

]

Ψ(~r; t), (5.55)

can be expressed in terms of the Volkov wave functions

Ψ(~r; t) =

∫

d~k c(~k; t)ΨV (~k,~r; t), (5.56)

where ~k is the momentum of the electron, c(~k; t) are the expansion coefficients in the basis

of the Volkov wave functions (ΨV ). Within the dipole approximation [ ~A(~r; t) ≈ ~A(t), and
~E(t) = −(d/dt) ~A(t)] the Volkov wave functions are the solutions of the TDSE for a charged

particle in a radiation field:

i
∂

∂t
Ψ(~k,~r; t) =

[

P̂2

2
+ ~r · ~E(t)

]

ΨV (~k,~r; t), (5.57)

where we have used that the laser-electron interaction term in the dipole approximation

reads as Ûint = ~r · ~E(t). The Volkov wave functions [as the solutions of Eq. (5.57)] have the

following analytical form:

ΨV (~k,~r; t) = exp

{

− i
2

∫ t

0

[

~k + ~A(t′)
]2

dt′ + i
[

~k + ~A(t)
]

· ~r
}

, (5.58)

where the vector potential of the electromagnetic field is calculated as ~A(t) = −
∫ t

0
dt′ ~E(t′).

Finally, after introducing the analytical form of the Volkov wave functions into Eq. (5.56),

and the expression of the time-dependent wave function into the TDSE (5.55), by performing

some basic algebraic calculations the following coupled integro-differential equation for the

expansion coefficients can be obtained

∂c(~k; t)

∂t
=

exp{ i
2
[k2t + 2~k · ~F (t)]}
i(2π)3

∫

d~k′c(~k′; t) exp

{−i
2
[k′2t + 2~k′ · ~F (t)]

}

×

×
∫

d~r V (~r) exp{i(~k′ − ~k) · ~r}, (5.59)

where ~F (t) =
∫ t

0
dt′ ~A(t′).

The direct - momentum space - TDSE method for the hydrogen atom

As the simplest benchmark of the numerical method the single electron system - i.e., the
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hydrogen atom - may be considered, in the case of which the Coulomb potential is spherically

symmetrical: V (~r) = −1/r, and its Fourier transform [last integral of Eq. (5.59)] can be

evaluated analytically:

∫

d~r V (~r) exp{i(~k′ − ~k) · ~r} = −4π
(~k′ − ~k)2

. (5.60)

Equation (5.59) can be solved numerically in 3 dimensions, where c(~k; t) ≡ c(kx, ky, kz; t),

and given in the explicit form as

∂c(kx, ky, kz; t)

∂t
=
−i

(2π)3
exp

{
i

2

[
(k2x + k2y + k2z)t+ 2kzF (t)

]
}

×

×
∫∫∫

dk′xdk
′
ydk

′
z

c(k′x, k
′
y, k

′
z)

exp
{

i
2

[
(k′2x + k′2y + k′2z )t+ 2k′zF (t)

]}

(

−4π
(~k′ − ~k)2

)

, (5.61)

where {kx, ky, kz} are the Cartesian coordinates of the momentum.

5.2.4 Iterative solution of the TDSE (in momentum space)

At the basis of the iterative solution of the TDSE (iTDSE model) lies the momentum-

space strong-field approximation (MSSFA) method [67]. In the MSSFA the Coulomb poten-

tial is considered only as a first order perturbation next to the laser-electron interaction and

the electron’s kinetic energy term. It was shown for the case of the hydrogen atom [67, 68]

that the MSSFA approach is reliable only when half-cycle laser pulses are considered. As

long as it provided accurate results in the halc-cycle regime, it totally failed for many-cycle

radiation fields. This failure is the direct consequence of the non-unitary time-propagation

of the wave function, which is manifested in an erroneous electron dynamics making the

MSSFA model (as a first order perturbation approach) unreliable.

The iTDSE method is an extension of the MSSFA, and can be interpreted as a high order

perturbation model. It implies the gradual introduction of higher order terms till convergence

is achieved. By the introduction of sufficiently high perturbation terms, in order to acquire

accurate results comparable with the experimental data and with the results obtained by

the numerical integration of the TDSE, it may represent an alternative tool to the ’exact’

solution.

The starting point of the iTDSE method corresponds with the first step of the momentum

space TDSE (presented in the previous subsection), and the time-dependent wave function

is expressed in the basis of the Volkov wave functions [the same expression as Eq. (5.56)]:

Ψ =

∫

d~k c(~k; t)ΨV(~k,~r; t),

where ~k is the momentum of the electron, c(~k; t) represent the expansion coefficients, and

ΨV the Volkov wave functions as the exact solutions of the TDSE for the charged particle
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in radiation fields. The coupled differential equation

∂c(~k; t)

∂t
=

exp{ i
2
[k2t + 2~k · ~F (t)]}
i(2π)3

∫

d~k′c(~k′; t) exp

{−i
2
[k′2t + 2~k′ · ~F (t)]

}

×

×
∫

d~r V (~r) exp{i(~k′ − ~k) · ~r}, (5.62)

which was derived from the TDSE [ i(∂/∂t)Ψ = ĤΨ] by basic algebraic calculation may be

written formally as:

c(n)(~k; t) = c(n)(~k; ts) +

∫ t

ts

dt′
exp{ i

2
[k2t′ + 2~k · ~F (t′)]}
i(2π)3

×

×
∫

d~k′c(n−1)(~k′; t′) exp

{−i
2
[k′2t′ + 2~k′ · ~F (t′)]

}

F(~k′, ~k), (5.63)

where ~F (t) =
∫ t

0
dt′ ~A(t′) with ~A(t) = −

∫ t

0
dt′ ~E(t′) being the vector potential in dipole

approximation, and the notation F was used to represent the Fourier transform of the V (~r)

Coulomb potential [i.e., the last integral of Equation (5.62)], which couples the different

expansion channels c(~k). The positive integer n represents the order of the solution of the

iTDSE model, where the c(n)(~k) solution depends on the values calculated for all momentum
~k′ in the previous iteration step: c(n−1)(~k′). The exponential terms in Equation (5.63) may

be grouped together inside a Q(~k,~k′, t) function such that the time-dependent part become

separated according to

c(n)(~k; t) = c(n)(~k; ts) +

∫

d~k′F(~k,~k′)c(n−1)(~k′; ts)

∫ t

ts

dt′ exp{iQ(~k,~k′, t)}, (5.64)

where it was considered that c(n−1)(~k′; t) ≃ c(n−1)(~k′; ts) was time invariant between ts and t.

The main task of this method is the efficient calculation of the last integral, since Q(t)

is a highly oscillatory function of time. In order to overcome this unpleasant difficulty from

the numerical point of view, and to reduce the computer time of the calculations an efficient

procedure was developed [68], which will be briefly presented here in the following lines for

the case of the hydrogen atom as the target of the laser field.

The iTDSE method for the hydrogen atom

In the case of the hydrogen atom the function F related to the Fourier transform of the

V (~r) = −1/r Coulomb potential reads as

F(~k,~k′) = −4π/(~k′ − ~k)2. (5.65)

By taking into account the possibility to reduce the dimensionality (3D→ 2D) of the studied
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system, i.e., the interaction of a linearly polarized laser pulse [ǫ̂ ≡ (0, 0, ǫz = 1)] with the

electron being initially in its spherical symmetric 1s ground state, the two momentum vectors

in Cartesian coordinates may be transformed into the cylindrical coordinate system as:

~k → (kx = kρ, ky = 0, kz)

~k′ → (k′x = k′ρ cosϕk′, k
′
y = k′ρ sinϕk′, k

′
z) (5.66)

where by considering the reduced dimensionality the momentum ~k becomes defined only in

the x0ρ plane, while the integration over d~k′ should be done all over the 3D momentum

space. Considering this, the expression for F leads to:

F(~k,~k′) = −4π/(~k′2 + ~k2 − 2kρk
′
ρ cosϕk′ − 2kzk

′
z). (5.67)

By knowing that the volume element of the cylindrical coordinate system is given as d~k′ =

k′ρdkρdkzdϕk′ , the integration over ϕk′ can be performed as

F =

∫ 2π

0

dϕk′ F(~k,~k′) =
−8π2

√

(k′ρ − kρ)2 + (k′z − kz)2
√

(k′ρ + kρ)2 + (k′z − kz)2
. (5.68)

As one can observe in the expression Eq. (5.67) of the Coulomb potential’s Fourier transform

a singularity occurs when ~k′ = ~k. This can be treated numerically by introducing a small

α→ 0 parameter into Eq. (5.69):

Fα(kρ, kz, k
′
ρ, k

′
z) = lim

α→0

−8π2

√

(k′ρ − kρ)2 + (k′z − kz)2 + α2
√

(k′ρ + kρ)2 + (k′z − kz)2 + α2

(5.69)

leading to the final form of the 2D TDSE:

c(n)(kρ, kz; t) = c(n)(kρ, kz; ts) +

∫ ∞

−∞

dk′z

∫ ∞

0

dk′ρ k
′
ρ Fα(kρ, kz, k

′
ρ, k

′
z)c

(n−1)(k′ρ, k
′
z; ts)×

×
∫ t

ts

dt′ exp{iQ(kρ, kz, k′ρ, k′z; t)}. (5.70)

As it was already mentioned earlier the most resource consuming task is to calculate the

highly oscillating temporal integral [i.e., the last integral of Eq. (5.70)]. In order to facilitate

the solution of this problem we proposed a method, where we transformed the problem of

the numerical integration into a problem of solving a linear system of equations by using the

Levin’s method [69], which involves the solution of a smooth Ordinary Differential Equation

(ODE). By introducing the constant function f(t) = 1, the temporal integral may be given
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in the following form:

∫ t

ts

dt′ f(t)eiQ(t) =

∫ t

ts

dt′
[
w(t)eiQ(t)

]′
= w(t)eiQ(t) − w(ts)eiQ(tS), (5.71)

and from the simple relation of f(t)eiQ(t) =
[
w(t)eiQ(t)

]′
is it straightforward that

eiQ(t) [w′(t) + iw(t)Q′(t)− f(t)] = 0
hence
=⇒ w′(t) + iw(t)Q′(t) = 1. (5.72)

The values of w(t) satisfying the above ODE have to be obtained in the limits of {ts, t}.
This can be done by expanding

w(t) =

Nquad∑

j=1

αjPj(t) (5.73)

in the basis built from the Lagrange-polynomials Pj(t) =
∏Nquad

k 6=j (t− tk)/(tj − tk) defined on

the t1, t2, . . . , tNquad
Gauss-Lobatto quadrature points, and by solving the linear system of

equation obtained for the αj expansion coefficients

Nquad∑

j=1

αj

[
P ′
j(t) + iQ′(t)Pj(t)

]
= 1. (5.74)

In this way, the values w(t) and w(ts) obtained in a relative short time, as well as the value

of the temporal integral of the rapidly oscillating function [Eq. (5.71)].

5.2.5 Comparison of the implemented TDSE methods

In order to compare the results obtained by using the previously presented, different,

TDSE methods, for the laser radiation the simplest target - the hydrogen atom - was con-

sidered, and the laser field described by an ultrashort half-cycle ”quick” pulse, the electric

component of which is given analytically with the expression

E(t) =







E0 sin (ωt+ ϕ0) sin
2
(
πt
τ

)
, if t ∈ [0, τ ],

0, otherwise,
(5.75)

where τ = 5 a.u. (pulse duration), ω = 0.05 a.u., and φ0 = −ωτ/2− π
2
. The temporal profile

and the Fourier transform of the pulse is illustrated in Figure 5.3.

First, the results obtained with the momentum-space strong field approximation (MSSFA)

and the iterative solution of the TDSE is compared, by carefully analysing the numerical

convergence of the wave function. In Figure 5.4 the norms of the wave function as a function

of propagation time for different laser field amplitudes are plotted. As one can observe the

norm calculated by the MSSFA and the low order iteration procedures is not conserved -

i.e., it increases rapidly - suggesting that these approaches are not reliable when considering

intense laser fields. This behaviour is obvious given that the MSSFA is a first order per-
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Figure 5.3: The temporal profile of the half-cycle pulse (left) and its Fourier transform
(right). E0 = 1 a.u., ω = 0.05 a.u., τ = 5 a.u., φ0 = −ωτ/2− π/2.

turbative method, which inherently results in a non unitary time propagation. However, by

increasing the iteration steps, i.e., introducing and approaching higher order perturbation

terms, the norm gets closer and closer to the exact (desired) value of 1. Starting from the

4th iteration step practically the norm is already near the value 1.

Further investigations were done by calculating the occupation probabilities (OPs) of

different bound states at the end of the laser pulse (t = τ). Figure 5.5/(a) shows these

quantities obtained with the MSSFA (1st order iTDSE) and higher order iTDSE calculations,

next to the data acquired by solving directly the TDSE. A good agreement for the first 8

bound states of the hydrogen atom was found between the results obtained with the 10th

order iteration and the exact TDSE, suggesting the iTDSE as a possible alternative tool for

the direct solution of the Schrödinger equation. Since the iTDSE model is practically a high

order perturbation approach, by the inclusion of sufficiently high order terms similar results

to the direct solution’s can be obtained.

The laser induced ionization probability densities are obtained by projecting the time-

E0=0.1 a.u. E0=0.5 a.u. E0=1 a.u.

Figure 5.4: The norm of the hydrogen atom wave function calculated for different iterative
orders (MSSFA and iTDSE model) as a function of time and field amplitudes: (a) E0 =
0.1 a.u., (b) E0 = 0.5 a.u., (c) E0 = 1 a.u.. The parameters of the ultrashort laser field: the
pulse duration τ = 1 a.u., the carrier angular frequency ω = 0.05 a.u..
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E0=0.1 a.u.

E0=0.5 a.u. E0=1 a.u.

Figure 5.5: The occupation probability of different electronic bound states calculated at
t = τ (a); the ejected electron spectra as a function of electron momentum for different field
amplitudes (laser intensities): (b) E0 = 0.1 a.u.; (c) E0 = 0.5 a.u; (d) E0 = 1 a.u..

dependent wave function onto the continuum states with momentum ~k:

dP

d~k
(~k) =

∣
∣〈ψ~k(~r)|Ψ(~r; t)

∣
∣2 . (5.76)

These ψ~k(~r) continuum states may be described by approximate wave functions (i.e., plane

waves) or by the exact Coulomb functions. In Figure 5.6 the electron spectra calculated

for different continuum state representation is plotted. By comparing the results obtained

with the direct TDSE (TDSE model) propagated wave function projected onto the exact

scattering states (Coulomb functions: TDSE-C model) with the reference data found in the

literature [70], a very good agreement was found. However the convergent iTDSE approach

gave very similar results for high energy electrons even when the continuum states were

represented by the simple plane waves. An unphysical behavior (a shoulder-like feature) at

low electron energies was observed, which is due to the fact that the final wave functions still

had contributions from the bound states at the end of the laser pulse, and these remnant

contributions are not orthogonal to the plane waves. This unphysical feature was eliminated

after removing (by the application of the Gram-Schmidt procedure) the bound states from

the final wave function (TDSE-O model). In the Volkov approach the interaction with the

parent ion was neglected [V (~r)→ 0] next to the interaction with the intense radiation field,
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Figure 5.6: The ionization probability density as a function of ejected electron energy cal-
culated at the end of the laser pulse using different TDSE methods. The parameters of the
laser field are: τ = 5 a.u., E0 = 1 a.u., ω = 0.05 a.u..

and by applying this approximate method only qualitatively similar results were obtained

to the the exact ones (those obtained by the direct solution of the TDSE).

Detailed theoretical descriptions regarding the results obtained for the hydrogen atom

by using the presented TDSE methods were presented at several international conferences

and published in the following articles 3.

3Publications:
ISI articles:
G. Zs. Kiss, S. Borbély, L.Nagy, Momentum Space Iterative Solution of the Time-Dependent Schrödinger

Equation, AIP Conf. Proc. 1564, 78 (2013).
S. Borbély, G. Zs. Kiss, L. Nagy, The Excitation and Ionization of the Hydrogen Atom In Strong Laser

Fields, Central European Journal of Physics 8, 249 (2010).

BDI article:
Kiss Gellért Zsolt et al., (in Hungarian) ”Numerikus módszerek intenźıv lézertér és atomok közötti

kölcsönhatás elméleti tanulmányozására”, Conf. proc.: ”A fizika, matematika és művészet találkozása az
oktatásban, kutatásban”/ ISBN 978-963-284-346-9, ELTE TTK (2013).

International conference (oral presentation):
G. Zs. Kiss, S. Borbély, L. Nagy, The Numerical Solution of The Time-Dependent Schrödinger Equation

for Atoms in Intense Laser Fields, PHYSICS CONFERENCE TIM-12 organized by the West University of
Timişoara, 27-30 November 2012, Timişoara, Romania
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CHAPTER 6.

TDSE for diatomic molecules

The interaction between an external laser field and a diatomic molecule considered with

a single active electron (SAE) can be accurately investigated by solving the molecular time-

dependent Schrödinger equation (TDSE) [71]:

i
∂

∂t
Ψmol(~r, ~R; t) = Ĥmol(t)Ψmol(~r, ~R; t) =

[

Ĥ0
mol + Ĥ int

mol(t)
]

Ψmol(~r, ~R; t), (6.1)

where Ψmol(~r, ~R; t) represents the molecular wave function in the coordinate space, ~r is the

electron’s position vector, ~R represent the nuclear coordinates, and Ĥmol(t) is the time-

dependent Hamiltonian. The Hamiltonian has a field-free part (Ĥ0
mol) and a time-dependent

term, which describes the interaction with the external laser field: Ĥ int
mol(t). The contributing

parts are discussed in more details in the following sections.

Throughout this work atomic units were considered (see Appendix I.) !

6.1 The Hamiltonian

6.1.1 The field-free Hamiltonian

First, let us focus our attention on the field-free part of the molecular Hamiltonian. As it

is well known from elementary quantum mechanics [72], the time-independent Hamiltonian

of a diatomic molecule having a single active electron may be separated into two main

contributions: a nuclear part and an electronic part:

Ĥ0
mol(t) = Ĥ0

n + Ĥ0. (6.2)

The nuclear part (Ĥn) can be given as the sum:

Ĥ0
n =

(

− ∇
2
R

2MA
− ∇

2
R

2MB

)

+
ZAZB

R
, (6.3)

where the terms in the parenthesis describe the kinetic energies of the two nuclei having

masses MA and MB, respectively; ∇R = ∂/∂ ~R is the nabla operator, while the second (last)

term of Eq. (6.3) is the Coulomb potential describing the electrostatic repulsion between
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the two positively charged nuclei, having net electric charges ZA > 0 and ZB > 0. R is the

nuclear coordinate and represents the internuclear separation.

The electronic part can be given as:

Ĥ0 = T̂ + V̂ , (6.4)

where T̂ is the kinetic energy operator of the electron, while V̂ describes the Coulomb

attraction between the electron and the two nuclei:

T̂ =
p2

2µ
=
−∇2

2µ
(6.5)

V̂ = V̂A + V̂B = −ZA

rA
− ZB

rB
. (6.6)

In the case of multi-electron molecular system, within the SAE approximation model V̂

becomes a pseudopotential, that also includes the shielding of the nucleus by the rest of

the electrons. In Eqs. (6.5) and (6.6) the values rA and rB represent the distances of

the electron measured from the two nuclei, while µ is the reduced mass of the system:

µ = (me)M/(m + M) ≃ me, where M = MA +MB, and me represents the mass of the

electron.

6.1.2 Interaction with the laser field

In the present work I considered the interaction between few-cycle (ultrashort) XUV laser

fields and a diatomic molecule (H+
2 ). For this case the Born-Oppenheimer approximation [73]

can be safely applied, thus the electronic and nuclear dynamics can be separated according

to

Ψmol(~R,~r; t) = Ψ{~R}(~r; t)χ(~R; t), (6.7)

where Ψ{~R}(~r; t) → Ψ(~r; t) is the electronic wave function, χ(~R) represents the nuclear

wave function, ~r is the position vector of the active electron, and ~R represent the nuclear

coordinates.

Furthermore, the fixed nuclei approximation (fixed R) was considered since the vibra-

tional period (∼ 104 a.u.) of the target is much larger than the duration of the considered

driving field (i.e., 28.26 a.u.), thus the calculations may be restricted to the solution of the

electronic TDSE for fixed internuclear separation.

For a fixed R one may write the electronic TDSE as follows:

i
∂

∂t
Ψ(~r; t) =

[

Ĥ0 + Ûint(t)
]

Ψ(~r; t), (6.8)

where the time-dependent Hamiltonian has two contributions: the Ĥ0 field-free and the Ûint

interaction (with the laser field) term.

As already seen previously in Sec. 6.1 [Eqs. (6.4)-(6.6)], the field-free Hamiltonian is
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calculated as:

Ĥ0 = T̂ + V̂ =

(−∇2

2µ

)

+

(

−ZA

rA
− ZB

rB

)

. (6.9)

For the interaction between the electron and the laser field the dipole approximation [74, 75]

was considered, since the typical size of the used wave lengths was few orders of magnitude

(> 102) larger than the typical size of the molecule, hence the electron-laser interaction term

can be described using the dipole approximation in length gauge as:

Ûint = ~r ~E(t); (6.10)

with ~E(t) being the electric vector component of the laser field.

In this work linearly polarized ~E(t) = (0, 0, Ez = E(t)) pulses with sine-square envelope

were considered, which can be described with the following analytical form:

E(t) =







E0 sin (ωt+ ϕCEP) sin
2
(
πt
τ

)
, if t ∈ [0, τ ],

0, otherwise;
(6.11)

where ω is the carrier frequency, τ is the pulse duration, ϕCEP is the carrier-envelope-phase,

and E0 represents the amplitude of the electric field.

6.2 Coordinate systems for laser-molecule interaction

In order to describe the studied system one may consider the use of different coordinate

systems, such as the Cartesian [x, y, z ∈ (−∞,∞)], the cylindrical (ρ, z, ϕ), polar (r, θ, ϕ)

or the prolate spheroidal coordinate (ξ, η, ϕ) system (PSC). The coordinate transformations

between them can be found in Appendix II.

The use of each coordinate system may have advantageous and disadvantageous features

regarding the numerical complexity of the studied problem. In the present case, where a

single active electron is present, the use of the prolate spheroidal coordinates was considered

the best choice [see Eqs. (6.13)], since these coordinates offer us a major advantage, such

that the field-free solutions (H0) can be fully separated for the molecule:

Ψ0 = X (ξ)H(η)Φ(ϕ); (6.12)

a property which is exploited later on during the numerical solution of the Schrödinger

equation.

The prolate spheroidal coordinates (PSC) are defined as follows:

ξ =
rA + rB
R

∈ [1,∞);

η =
rA − rB
R

∈ [−1, 1];
ϕ (azimuthal angle) ∈ [0, 2π]; (6.13)
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[as already pointed out: R is the internuclear separation, while rA and rB are the electron’s

distances measured from the two nuclei (A and B)].

This total separability can not be achieved by working with the other coordinate systems.

However, numerous studies found in the literature [76, 77] implying interactions between

laser fields and diatomic molecules having a single active electron consider the use of the

cylindrical coordinates:

ρ ∈ [0,∞), z ∈ (−∞,∞), ϕ ∈ [0, 2π], (6.14)

where the field-free solutions can be only partly separated: Ψ0 = φ(ρ, z)Φ(ϕ). An another

disadvantage of using the cylindrical coordinates lies in the fact that the real (physical) infi-

nite coordinate space (i.e., simulation box) should be truncated in three different directions,

at positions zmin; zmax, and ρmax, whilst in the case of the PSC system, this should be done

at only one point, at ξmax < ∞ (implying the lowest possible number of truncations). This

later condition implicitly reduces the possibility of numerical errors that may occur at the

edges of the configuration space during the time propagation of the electronic wave packets

(EWPs) by using the prolate spheroidal coordinates.

In addition to that, the Hamiltonian will became more sparser by using PSC, hence it is

numerically more efficient to work with this coordinate system.

6.3 TDSE in the prolate spheroidal coordinates

The geometry of the studied system and the prolate spheroidal coordinates [Eq. (6.13)]

can be seen in Figure 6.1, where (x′y′z′) represents the frame attached to the molecule,

such that the two nuclei A and B lie on the 0z′ axis having the coordinates (0, 0, R/2) and

(0, 0,−R/2), with R being the internuclear separation. On the other hand, the 0z axis of the

(xyz) frame is attached in the direction of the polarization vector of the linearly polarized

laser field, while the two axis 0y′ and 0y coincide. The angle between the molecular axis and

the polarization of the laser field is denoted with θR.

The operators of the electronic Hamiltonian [Eqs. (6.21)-(6.8)] using the PSC will have

the following form [78]:

• The operator of the Coulomb-potential:

V̂ = − 2

R

[
ZA(ξ − η) + ZB(ξ + η)

ξ2 − η2
]

. (6.15)

• The kinetic energy operator:

T̂ = −∇
2

2µ
=

2

µR2

[

T̂ξ + T̂η
J(ξ, η)

−
∂2ϕ

(ξ2 − 1)(1− η2)

]

, (6.16)

where J(ξ, η) = ξ2 − η2 is the Jacobian, while T̂ξ and T̂η differential operators have the
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Figure 6.1: The geometry of the studied system in the frame attached to the laser po-
larization axis (subfigure a) and in the frame attached to the molecular axis (subfigure b).
The (x’y’z’) molecular framework is rotated by the angle θR around the Oy=Oy’ axis. The
electric component of the incident laser field is linearly polarized in the Oz direction.

following expressions:

T̂ξ = −
d

dξ
(ξ2 − 1)

d

dξ
; T̂η = −

d

dη
(1− η2) d

dη
. (6.17)

• The laser-electron interaction operator:

Ûint(t) = ~r ~E(t) = E(t)z = E(t)[z′ cos θR + x′ sin θR] =

= E(t)

[
R

2
ξη cos θR +

R

2

√

(ξ2 − 1)(1− η2) sin θR
]

. (6.18)

with ~E(t) = ǫ̂E(t) being the linearly polarized [i.e., ǫ̂ ≡ (0, 0, ǫz = 1)] electric component of

the external laser field, and θR the angle between the molecular axis and the ǫ̂ polarization

vector (see Fig. 6.1b). x′ and z′ are the components of the electron position vector ~r in

the coordinate system fixed to the molecular frame (see Fig. 6.1a). This term can also

be transformed into the prolate spheroidal coordinate system after expressing x′, z′ as a

function of {ξ, η, ϕ}: z′ = (R/2)ξη; x′ = (R/2)
√

(ξ2 − 1)(1− η2) cosϕ (see Appendix II.).

This laser-electron interaction term was derived using the dipole approximation [i.e.,

the spatial dependence of the vector potential is neglected due to the fact that the laser’s

wavelength is much larger than the typical size of the molecule, thus ~A(~r; t) ≈ ~A(t)], and

it’s expressed in length gauge.

By taking into account the separability of the field-free wave function [Eq. (6.12)] the
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following ansatz is used for the time-dependent wave function (TDWF):

Ψ(t) =
∞∑

m=−∞

Ψ(m)(ξ, η; t)
eimϕ

√
2π
, (6.19)

where m ∈ Z.

After inserting the TDWF [Eq. (6.19)] into the electronic TDSE [Eq. (6.8)], then using

the expressions of the contributing parts of the Hamiltonian operator [Eqs. (6.15)-(6.18)];

by doing some algebra operations one can deduce the TDSE in the prolate spheroidal

coordinate system:

i
∂Ψ(m)(ξ, η; t)

∂t
= Ĥ

(m)
0 Ψ(m)(ξ, η; t) + E(t)

R

2
ξη cos θRΨ

(m)(ξ, η; t) +

+
E(t)R

2

√

(ξ2 − 1)(1− η2) sin θR
Ψ(m−1)(ξ, η; t) + Ψ(m+1)(ξ, η; t)

2
,

where (6.20)

Ĥ
(m)
0 =

[

2

meR2

(

T̂ξ + T̂η
ξ2 − η2 +

m2

(ξ2 − 1)(1− η2)

)

− 2

R

(
ZA(ξ − η) + ZB(ξ + η)

ξ2 − η2
)]

. (6.21)

Equation (6.20) is a set of coupled partial differential equations, where the couplings (last

term in the equation) between the different (neighbouring) channels labelled with quantum

number m occur if the angle between the molecular axis and the polarization vector of the

external electric field is different from 0 (i.e., sin θR 6= 0).

6.4 TDSE on Finite Element Discrete Variable Repre-

sentation grids

For the discretization of the Ψ(m)(ξ, η) wave function I have used the finite element

discrete variable representation (FE-DVR) method for both the ξ and η coordinates. Ac-

cording to FE-DVR method the configuration space (ξ ∈ [1, ξmax]; η ∈ [−1, 1]) was divided
into smaller sub-domains, or finite elements (FEs), and the WF expanded in the basis of

local DVR functions in each FE (see Fig. 6.2). The number of DVR functions considered in

each FEs was constant: Nfun = Nfun
{ξ} = Nfun

{η} .

The DVR functions defined in the αth FE had the following general (writing x instead of

ξ and η) analytical form:

f (α)
p (x) =







L
(α)
1 (x)+L

(α−1)
Nfun

(x)
√

w
(α)
1 +w

(α−1)
Nfun

, p = 1;

L
(α)
p (x)√
w

(α)
p

, p = 2, · · ·Nfun − 1;

L
(α)
Nfun

(x)+L
(α+1)
1 (x)

√

w
(α)
Nfun

+w
(α+1)
1

, p = Nfun,

(6.22)
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ξ
ξmax1

FE1 FE2 FEα

Δ  FE
{ξ}

ξ
(α-1)

Nfun
ξ

(α)

1= ξ
(α)

Nfun
ξ

(α+1)

1=

η
-1

FE1 FE2 FEα

Δ  FE
{η}

η
(α-1)

Nfun
η

(α)

1= η
(α)

Nfun
η

(α+1)

1=

1

Figure 6.2: The FE-DVR grid used for the ξ and η coordinates.

where

L(α)
p (x) = P(α)

p (x)θ(x− x(α)1 )θ(x
(α)
Nfun
− x), (6.23)

and Pp(x) represents the Lagrange interpolating polynomials:

Pp(x) =

Nfun∏

k 6=p

x− xk
xp − xk

, (6.24)

which have the property Pp(xq) = δpq. In Equation (6.23) the use of the Heaviside (step)-

function ensured that L
(α)
p (x) had nonzero values only inside the αth FE, since:

θ(x− x0) =
{

1, x ≥ x0;

0, otherwise.
(6.25)

Since the Hamiltonian contains at most second order derivatives, it was sufficient to

ensure the continuity at the finite element boundaries, which was achieved by the use of

the so-called ”bridge” functions (i.e., the basis functions when p = 1,Nfun). In each FE

the Lagrange interpolating polynomials were defined using a set of local gridpoints, i.e., the

Gauss-Lobatto quadrature points and their associated weights w
(α)
p .

Using the FE-DVR method the main advantage consists in the following. Since the

underlying configuration space is divided into smaller FEs, in each of which the wave function

is represented in a local DVR basis, the kinetic energy matrix will not be ’full’ as in the
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standard DVR approach, but will be made up of several blocks which overlap at only several

points. The sparsity of the matrix facilitates the numerical calculations of matrix-vector

products, and the diagonalization of the Hamiltonian. For a local potential [e.g., Uint(t), V ]

the matrix remains diagonal.

6.4.1 Using the matrix formalism

In order to obtain the final symmetrical form of the Hamiltonian (see below at the

Symmetrization of the Hamiltonian subsection), and to simplify the numerical calculations

when scalar products (e.g., calculation of the wave function norm or transition amplitudes)

are needed, I employed the following substitution for the time-dependent wave function:

Ψ(m)(ξi, ηj; t) = ψ
(m)
ij (t)

/√

(R3/8)w
{ξ}
i w

{η}
j J(ξi, ηj), (6.26)

where the global indexing of i ≡ (α{ξ}, p{ξ}) and j ≡ (α{η}, p{η})) was considered, and w
{ξ}
i

and w
{η}
j are the weights associated to the corresponding Gauss-Lobatto quadrature points

ξi and ηj , respectively (see Fig. 6.2); while J(ξi, ηj) = (ξ2i − η2j ) is the Jacobian calculated

in the given gridpoints.

Equation (6.26) can be easily obtained, after one uses the following wave function ex-

pansion in terms of the fi′(ξ) and gj′(η) local DVR functions (6.22) defined on the ξi′ and

ηj′ gridpoints:

Ψ(m)(ξ, η; t) =

Nξ∑

i′=1

Nη∑

j′=1

ψ
(m)
i′j′ (t)fi′(ξ)gj′(η)/

√

(R3/8)J(ξi′, ηj′), (6.27)

where Nξ and Nη are the total number of gridpoints considered on the two coordinate axis,

and by knowing that the DVR functions satisfy the following equations: fi′(ξi) = δii′/

√

ω
{ξ}
i′

and gj′(ηj) = δjj′/
√

ω
{η}
j′ .

As already mentioned before using the substitution (6.26) for the TDWF the evaluation

of scalar products (i.e., integrals) of the form:

〈Ψ(m)
1 |Ψ

(m)
2 〉 =

∑

ij

[ψ
(m)
1ij ]

∗ψ
(m)
2ij (6.28)

becomes numerically cheaper, since the number of multiplications in the scalar products is

minimized, i.e., reduced to 1.

By considering the substitution (6.26) and inserting Equation (6.19) into the TDSE

(6.8), and after performing some basic algebraic operations one can obtain the TDSE in

the matrix formalism (i.e., the projection of Equation (6.20) on the FE-DVR basis):

i
∂ψ

(m)
ij (t)

∂t
=
∑

m′i′j′

Hmm′

iji′j′(t)ψ
(m′)
i′j′ (t), (6.29)
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where the coupling (Hamiltonian) matrix elements are decomposed as follows:

Hmm′

iji′j′(t) = Tmm′

iji′j′ + V mm′

iji′j′ + Umm′

iji′j′(t)., (6.30)

and their explicit forms can be found listed in Table 6.1, at the end of the current subsection.

The TDWF labelled with the quantum number m is given formally as the column matrix:

∣
∣ψ(m)(ξ, η)

〉
→




































ψ(m)(η1, ξ1)

ψ(m)(η2, ξ1)
...

ψ(m)(ηNη
, ξ1)

ψ(m)(η1, ξ2)

ψ(m)(η2, ξ2)
...

ψ(m)(ηNη
, ξ2)

...

...

ψ(m)(η1, ξNξ
)

ψ(m)(η2, ξNη
)

...

ψ(m)(ηNη
, ξNξ

)




































.

Equation (6.29) can be also written in the explicit form, i.e., the value of TDWF in the

(ξi, ηj) coordinate is governed by the following equation:

i
∂

∂t
ψ

(m)
ij (t) =

∑

i′,j′

{
2

meR2
J
−1/2
ij J

−1/2
i′j′

[

δjj′〈fi|T̂ξ|fi′〉+ δii′〈gj|T̂η|gj′〉
]

+ δii′δjj′

[
2m2

meR2(ξ2i − 1)(1− η2j )
+ Vij + E(t)z′ij cos θR

]}

ψ
(m)
i′j′ (t) +

+
∑

i′,j′

{
δii′δjj′E(t)x

′
ij{ϕ=0} sin θR

} ψ
(m−1)
i′j′ (t) + ψ

(m+1)
i′j′ (t)

2
, (6.31)

where z′ij = (R/2)ξjηj and x
′
ij{ϕ=0} = (R/2)

√

(ξ2i − 1)
(
1− η2j

)
.

In order to obtain Equation (6.31) and the matrix elements listed in Table 6.1 the fol-

lowing procedure was considered when evaluating integrals:

〈fi|A(ξ, η)|fi′〉 =

∫ ∞

1

dξ fi(ξ)A(ξ, η)fi′(ξ) ≃

≃
Nξ∑

k=1

ω
{ξ}
k fi(ξk)A(ξk, η)fi′(ξk) = δii′A(ξi, η), (6.32)
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and in a similar way:

〈gj|B(ξ, η)|gj′〉 =
∫ 1

−1

dη gj(η)B(ξ, η)gj′(η) ≃ δjj′B(ξ, ηj), (6.33)

where A(ξ, η) and B(ξ, η) are the general representations of two non-differentiating operators.

Table 6.1: The Matrix elements of the coupling matrices [Eq. (6.30)]: (A) Kinetic-energy;
(B) Coulomb-potential; (C) laser-electron interaction.

(A)

Tmm′

iji′j′ = δmm′

{

2
meR2

〈fi|T̂ξ|fi′〉δjj′+〈gj |T̂η|gj′〉δii′√
Jij
√

Ji′j′
+ δii′δjj′

[
2m2

meR2(ξ2
i
−1)(1−η2

j
)

]}

(B)

V mm′

iji′j′ = δmm′δii′δjj′V (ξi, ηj)

(C)

Umm′

iji′j′(t) = δii′δjj′
[

δmm′z′ijE(t) cos θR +
(δm−1,m′+δm+1,m′ )

2
x′ij{ϕ=0}E(t) sin θR

]

,

where z′ij = (R/2)ξjηj , and x
′
ij{ϕ=0} = (R/2) (ξ2i − 1)

−1/2 (
1− η2j

)−1/2
.

6.4.2 Symmetrization of the Hamiltonian matrix

In order to obtain physically accurate results the Ĥ(t) operator should be represented by

a Hermitian matrix, i.e., a symmetric matrix in the FE-DVR representation. By taking into

account that in the expansion of the Ψ(m)(ξ, η; t) the fi(ξ) and gj(η) basis functions are real,

we seek for a symmetric Hamiltonian matrix. In the right-hand side of Equation (6.31) the

matrix elements of the Coulomb interaction operator (Vij) and the laser-interaction operators

are symmetrical (diagonal matrices), but the kinetic-energy matrix should be symmetrized.

The symmetrization can be done by integrating by parts the 〈fi|T̂ξ|fi′〉, 〈gj|T̂η|gj′〉 elements:

(T̂η)jj′ = 〈gj|T̂η|gj′〉 = −
∫ 1

−1

dη gj(η)
d

dη

[

(1− η2) d
dη
gj′(η)

]

=

= −
[
(1− η2)gjg′j′

]
∣
∣
∣
∣

+1

−1

+

∫ 1

−1

dη(1− η2)g′jg′j′ (6.34)
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The similar operation can be done with the ξ dependent elements:

(T̂ξ)ii′ = 〈fi|T̂ξ|fi′〉 = −
∫ ∞

1

dξ fi(ξ)
d

dξ

[

(ξ2 − 1)
d

dξ
fi′(ξ)

]

=

= −
[
(ξ2 − 1)fif

′
i′

]
∣
∣
∣
∣

∞

1

+

∫ ∞

1

dξ(ξ2 − 1)f ′
if

′
i′ (6.35)

In Equation (6.34) only the last (symmetric) term remains, because when η = ±1 the

term 1 − η2 is zero. On the other hand, the value for (T̂ξ)ii′ matrix element can also be

approximated with the numerical value of the last integral, first because when ξ = 1 the

term ξ2 − 1 is zero, second when ξ goes to infinity the limξ→∞ f
(Last FE)
i (ξ) = 0 equality can

be considered as a valid approximation, since the value infinity lies outside of the last FE on

the truncated FE-DVR grid.

According to the above considerations one will obtain a symmetric Hamiltonian by ap-

plying the Gauss integration quadrature to evaluate the integrals in Equations (6.34)-(6.35)

〈gj|T̂η|gj′〉 =

∫ 1

−1

dη(1− η2)g′jg′j′ ≈
∑

l

w̃l (1− η2l )g′j(ηl)g′j′(ηl); (6.36)

〈fi|T̂ξ|fi′〉 ≈
∫ ∞

1

dξ(ξ2 − 1)f ′
if

′
i′ ≈

∑

k

wk (ξ2k − 1)f ′
i(ξk)f

′
i′(ξk), (6.37)

and inserting the results into Equation (6.31).

In both expressions of Eqs. (6.36)-(6.37) the calculation of the first order derivative of

Table 6.2: The first order derivative of the Lagrange interpolating polynomial given in a
general form (A) and calculated in the x

(α)
l FE-DVR grid point (B).

(A)

d

dx
P(α)

p (x) =
d

dx






Nfun∏

n=1
n 6=k

x− x(α)n

x
(α)
k − x

(α)
n






=

Nfun∑

n=1
n 6=k

1

x
(α)
k − x

(α)
n

Nfun∏

i=1
i 6=k,n

x− x(α)i

x
(α)
k − x

(α)
i

. (6.38)

(B)x→ xjl

dP(α)
p

dx
(x

(α)
l ) =







Nfun∑

n=1
n 6=l

1

x
(α)
k

−x
(α)
n

, for x
(α)
l

= x
(α)
k

1

x
(α)
k

−x
(α)
l

Nfun∏

p=1
p 6=k,l

x
(α)
l

−x
(α)
p

x
(α)
k

−x
(α)
p

, for x
(α)
l

6= x
(α)
k
.

(6.39)
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Lagrange polynomials is involved, which can be obtained by performing some analytical

calculations:

d

dx
L(α)
p (x) =

dP(α)
p (x)

dx
θ(x− x(α)1 )θ(x

(α)
Nfun
− x)

+ P(α)
p (x)

[

θ(x
(α)
Nfun
− x)δ(x− x(α)1 )− θ(x− x(α)1 )δ(x

(α)
Nfun
− x)

]

, (6.40)

where the first order derivative of the Lagrange interpolating polynomial was calculated

analytically and listed in Table 6.2. The shape of both matrices (T̂ξ) and (T̂η) constructed

from the matrix elements calculated in Eqs. (6.36)-(6.37) will be sparse, with large off-

diagonal regions having values of zero (see Fig. 6.3). From the numerical point of view it is

advantageous to have a sparse Hamiltonian, because the matrix-vector multiplications will

be cheaper. On the other hand, I have further optimized the code by employing a proper

parallelization (using OpenMPI) along the ξ configuration space (i.e., the same number of

FEs were distributed on each CPU).

Figure 6.3: The shape (internal structure) of the Tξ, Tη matrices of the full H(t) Hamiltonian
in the present representation.

Finally it is worth mentioning, that by using the FE-DVR grid a high accuracy can be

achieved with the help of much less gridpoints than in the case of the finite difference (FD)

grid. The other advantage of FE-DVR lies in its flexibility which means that the size of

each FE can be adjusted in the configuration space. During the numerical simulation in the

regions of configuration space where the main physical processes take place a higher local

grid density can be used. Outside of this region a sparser grid can be employed.
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6.5 Temporal propagation of the wave function

At the early stages of the numerical code’s development the fourth order Runge-Kutta

method[79, 80] was used for solving the TDSE since its implementation does not require la-

borious procedures. Despite the fact, that it is not the most efficient TDSE solver technique

- when high accuracy results are needed in the shortest time - it was used in the begin-

ning to test the correctness of other components of the code and to acquire relevant data

as well. After these primary tests a state-of-the-art method was implemented, the short-

iterative Lanczos (SIL) method, which is an elaborate technique used worldwide in leading

theoretical groups. The SIL algorithm gives the possibility to set the precision of the time

propagation, either by using an adaptive time step scheme, or by adaptively increasing the

local configuration space where the TDSE is solved. This algorithm will be briefly presented

in this section.

The short-iterative Lanczos method

SIL is an explicit propagation method, which approximates the evolution operator [Û(t)],

yet it still calculates Û(t) by a direct exponentiation of Ĥ. It is worth mentioning that the

Lanczos method implies Hermitian (i.e., symmetrical Hamiltonian in our case) operators.

At the basis of the Lanczos propagator lies the construction of a local subspace of the

full Hilbert space, the so-called Krylov subspace, which was originally proposed to calculate

eigenstates and eigenenergies of large matrices [81]. In the present work the Krylov-subspace

is constructed by the repeated action of the Hamiltonian on the initial |Ψ0〉 = |Ψ(~r; t)〉 state,
during which an NK = n + 1 dimensional subspace is created:

Kn+1(t) =
{

|Ψ0〉, Ĥ|Ψ0〉, Ĥ2|Ψ0〉, . . . , Ĥn|Ψ0〉
}

(6.41)

With the increase of the subspace size, the precision of the approximated evolution opera-

tor also increases, however, this does not mean a linear dependence, since the most probable

paths the exact WF will follow are in the direction of |Ψ0〉 and the Ĥ|Ψ0〉 vectors (states),
and by increasing the order of the vectors (n) these individual |Kn〉 ≡ Ĥn|Ψ0〉 paths become

less and less probable. Thus, by increasing the size of the Krylov-subspace convergence will

be obtained within a proposed error tolerance. It is convenient to transform the vectors of

Kn+1(t) into an orthonormal set of Qn+1 vectors that will span Kn+1:

Qn+1(t) = {|q0〉, |q1〉, |q2〉, . . . , |qn〉} , (6.42)

where |q0〉 = |Ψ0〉/||Ψ0||, and 〈qk|ql〉 = δkl, while the individual |qk〉 vectors were obtained

by employing the Gram-Schmidt orthogonalization procedure as:

|qk〉 = |Kk〉 −
k−1∑

l=0

〈Kk|ql〉
〈ql|ql〉

|ql〉, for k ≥ 1. (6.43)
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In this Qn+1(t) basis the (n+1)×(n+1) sized (ĥ) Hamiltonian (Hessenberg) matrix was built

up with the αk = 〈qk|Ĥ|qk〉 matrix elements on the main diagonal, and βk−1,k = βk,k+1 ≡
〈qk|Ĥ|qk+1〉 on the two secondary diagonals:

(ĥ) = QTHQ =












α0 β0 0 · · · 0

β0
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . βn−1

0 · · · 0 βn−1 αn












.

The formal solution of the time-dependence Schrödinger equation leads to:

|Ψ(r; t+ δt)〉 = Û(t+ δt, t)|Ψ(r; t)〉, (6.44)

where by assuming that over the time interval (t, t+δt) the Hamiltonian is time independent

the evolution operator can be approximated as:

Û(t + δt, t) = e−iĤ(t)δt. (6.45)

In the constructed Krylov subspace the time evolution operator is approximated as Û ≃
ÛQ = exp{−iĤQ(t)δt} = Q exp{−iĥδt}Q†, where Q contains as columns the |qi〉 basis
vectors. By the assumption that (ĥ) is diagnosable, the TDWF can be written as

|Ψ(r; t+ δt)〉 = Q
[
Φ† diag

(
e−iǫ1δt, . . . , e−iǫn+1δt

)
Φ
]
Q†|Ψ(r; t)〉, (6.46)

where the columns of the Φmatrix are built up from the {|Φ1〉, |Φ2〉, . . . , |Φn+1〉} eigenvectors
of the (ĥ) operator, while ǫ1, . . . , ǫn+1 represent their corresponding eigenenergies. By using

the equality Q†|Ψ(~r; t)〉 ≡ Q†|q0〉 = (1, 0, · · · , 0)T , and the orthonormal property 〈qk|ql〉 =
δkl, the expression leads to the form of:

|Ψ(~r; t+ δt)〉 = QΦ†diag
(
e−iǫ1δt, . . . , e−iǫn+1δt

)
|Φ1〉. (6.47)

After performing the multiplications in Equation (6.46) the final form of the SIL scheme can

be expressed as

|Ψ(~r; t+ δt)〉 =
n∑

k=0

n+1∑

j=1

Φk+1(j)e
−iǫjδtΦ1(j)|qk〉, (6.48)

where Φk is the k-th eigenvector of ĥ.
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Error estimation of the time propagation

Within the presented time-propagation scheme the convergent Ψ(t+ δt) time-dependent

wave function can be obtained in two distinct ways. In the first approach the δt→ ∆t time

step is fixed all over the simulation time, and in each propagation step the desired convergence

of the newly calculated Ψ(t+∆t) wave function is obtained by gradually increasing the size

of the Krylov-subspace. The second possibility to achieve convergent results is to fix the size

of the Krylov-subspace and in each propagation step gradually decrease the ∆t time step,

till a desired accuracy is reached.

In the present work the Equation (6.48) was solved by taking into account the first error

estimation procedure, when the time step ∆t was fixed during the simulation and adjustable

Krylov subspace size was used. For this approach a δrel parameter was introduced and defined

as

δ
(NK+1)
rel =

‖Ψ(NK+1)(ti +∆t)−Ψ(NK)(ti +∆t)‖
‖Ψ(NK)(ti +∆t)‖ , (6.49)

which estimates the the relative error of the time propagation step. Starting from a lower

value (typically 5 or 7) for the initial NK size of the Krylov subspace in each discrete ti+1

time moment the wave function Ψ(NK)(ti + ∆t) is calculated according to the procedure

described a few lines earlier, and in the same step also a more accurate Ψ(NK+1)(ti + ∆t)

wave function is calculated for the larger NK+1 sized, i.e., more complete than the previous

Krylov-subspace. The numerator in Eq. (6.49) measures the norm of the difference between

the two wave functions calculated by using different subspace sizes. This value gets smaller

and smaller as NK is increased. Then this norm is compared to the norm of the wave

function calculated with the lower subspace size Ψ(NK)(ti +∆t), which practically should be

equal to 1 independently from the considered iteration step. This gradual increase of the

NK is repeated until the calculated δ
(NK+1)
rel is brought below the desired propagation error

tolerance: δ
(NK+1)
rel < ε

(prop)
tol . Finally, it is worth mentioning that this approach inherently

implies to run at least twice the short-iterative Lanczos scheme in each time step in order

to be able to calculate a relative estimated error according to Eq. (6.49).

In the present case an error tolerance of ε
(prop)
tol = 10−8 was used, and the time step was

fixed to ∆t = 10−3.
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6.6 Calculation of physical quantities

By solving the TDSE [Eqs. (6.41)-(6.48)] the time dependent wave function Ψ(~r; t)

is obtained, which includes all the information about the studied system, (i.e., the active

electron of H+
2 molecule interacting with the external radiation field).

According to the elementary quantum mechanics, information regarding a physical ob-

servable A (i.e., the value of the physical quantity) is extracted from the TDWF as

〈A〉 = 〈Ψ|Â|Ψ〉〈Ψ|Ψ〉 , (6.50)

where 〈A〉 represents the expected value of A and Â is the operator assigned to the quantity

A. 〈Ψ|Ψ〉 means the square of the wave function’s norm.

6.6.1 The norm of the wave function

The scalar product S = 〈Ψ|Ψ〉 represents the square of the wave function’s norm, where

the norm by definition is:

N =
√
S =

√

〈Ψ|Ψ〉. (6.51)

In the present approach S is calculated as:

〈Ψ|Ψ〉 =
∫ ∞

1

dξ

∫ 1

−1

dη

∫ 2π

0

dϕ
R3

8
(ξ2 − η2)Ψ∗(ξ, η, ϕ; t)Ψ(ξ, η, ϕ; t), (6.52)

where by taking into account Equation (6.19), S will have the following analytical form:

〈Ψ|Ψ〉 =

∫ ∫

dξdη
R3

8
(ξ2 − η2)

∑

m,m′

[
Ψ(m)(ξ, η; t)

]∗
Ψ(m′)(ξ, η; t)

∫

dϕ
e−imϕ

√
2π

eim
′ϕ

√
2π

=

=
∑

m

∫ ∫

dξdη
R3

8
(ξ2 − η2)

[
Ψ(m)(ξ, η; t)

]∗
Ψ(m)(ξ, η; t), (6.53)

where the property
∫ 2π

0

dϕe−i(m−m′)ϕ = (2π)δm,m′ (6.54)

was used. By using the Gauss quadratures and introducing the substitution of the wave

function [Eq. (6.27)], the calculation of the scalar product can be reduced to a simple final
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expression:

〈Ψ|Ψ〉 ≃
∑

m

∑

k

ω
{ξ}
k

∑

l

ω
{η}
l

R3

8
(ξ2k − η2l )

[
Ψ(m)(ξk, ηl; t)

]∗
Ψ(m)(ξk, ηl; t) =

=
∑

m

∑

k,l

ω
{ξ}
k ω

{η}
l

R3

8
(ξ2k − η2l )

∑

i′,j′

[

ψ
(m)
i′j′ (t)

]∗

fi′(ξk)gj′(ηl)
√

(R3/8)J(ξi′, ηj′)

∑

i,j

ψ
(m)
ij (t)fi(ξk)gj(ηl)
√

(R3/8)J(ξi, ηj)
≡

=
∑

m

∑

k,l

[

ψ
(m)
kl (t)

]∗

ψ
(m)
kl (t). (6.55)

Hence, throughout of the present work the norm of the TDWF was calculated as:

N =

√
∑

m

∑

k,l

∣
∣
∣ψ

(m)
kl (t)

∣
∣
∣

2

, (6.56)

and its value was initialised to 1, i.e., the norm of the |1sσg〉 initial (ground) state.

6.6.2 Occupation probabilities of electronic bound states

During the interaction with the laser field the depletion of the |1sσg〉 initial (ground)
state next to the population dynamics (increase or decrease as a function of time) of higher

energy bound states were also calculated. First, because it gives us an intuitive picture

relating at which part of the laser pulse the major electron dynamics are taking place, what

is the physics behind these initiated dynamics (ionization mechanism, excitations by photon-

absorptions). Second, in the photoelectron spectra calculation it will play a crucial role to

identify properly all the bound states (BS) that remained populated after the conclusion of

the laser pulse, since the removal of these states from the TDWF is the key to obtain correct

photoelectron spectra.

Prior to switching the laser field on, a large number (≈ 200) of bound states have been

calculated by the orthogonalization of the (Ĥ0) field-free Hamiltonian, and the symmetry

of each obtained BS (|ϕb〉 ∈ {|1sσg〉, |2pσu〉, |2sσg〉, . . . }) was automatically identified af-

ter counting the nodal planes in both the ξ and η coordinate directions. Next to the BS

wave functions [eigenfunctions of (Ĥ0)] the BS energies [eigenvalues of (Ĥ0)] have also been

obtained.

The time evolution of the bound state |ϕb〉 is governed by the Ĥ0 Hamiltonian according

to the time-independent Schrödinger equation:

|φb(t)〉 = e−iĤ0t|ϕb〉 ≡ e−iεbt|ϕb〉, (6.57)

where |ϕb〉 is the b -th BS and εb is its corresponding energy (b ∈ {0, 1, 2, . . .}; |ϕ0〉 ≡ |1sσg〉).
The occupation probability as a function of time of the b-th BS was calculated as the square
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of the TDWF projection onto this state as:

Pb(t) =
∣
∣
〈
φb(t)

∣
∣Ψ(ξ, η, ϕ, t)

〉∣
∣
2
, (6.58)

where in a similar way as in Eqs. (6.52)-(6.55) using the present approach is calculated using

the PSC coordinates and FE-DVR grid method:

Pb(t) =

∣
∣
∣
∣

∑

m

∑

k,l

(ϕ
(m)
b )∗klψ

(m)
kl (t)

∣
∣
∣
∣

2

, (6.59)

where (ϕ
(m)
b )kl is the value of the bound wave function in the ξk and ηl gridpoints.

6.6.3 The expected position of the ejected electron

Next to the investigation of the occupation probabilities of different electronic bound

states, an another important quantity, the the time-dependent position of continuum elec-

tronic wave packets (r), will play a significant role in the photoelectron spectra calculation,

as it will be discussed in more details in the following subsection.

In accordance with the general form of Eq. (6.50), r is calculated in the present approach

as follows:

r(t) =
〈Ψfree(t)|r|Ψfree(t)〉
〈Ψfree(t)|Ψfree(t)〉

, (6.60)

where |Ψfree〉 represents the free part of the wave function after the BSs with not negligible

Pb(t) contributions [Eq. (6.59)] have been removed from the TDWF.

The continuum part of the electron’s wave function was calculated by employing the

Gram-Schmidt procedure:

|Ψfree(t)〉 = |Ψ(t)〉 −
∑

b

〈φb(t)|Ψ(t)〉 |φb(t)〉, (6.61)

where the scalar product in the last term (i.e., the projection of the TDWF onto the |φb(t)〉
bound state) was calculated in a similar way as in the Equation (6.59).

By considering the present method the position of the ejected electron is obtained by the

following expression:

r(t) =

∑

m,k,l

[

ψ̃
(m)
kl (t)

]∗ (
R
2

√

ξ2k + η2l − 1
)

ψ̃
(m)
kl (t)

∑

m,k,l

[

ψ̃
(m)
kl (t)

]∗

ψ̃
(m)
kl (t)

, (6.62)

where ψ̃
(m)
kl (t) is the value of the wave function’s continuum part in the ξk and ηl gridpoints

after the substitution (6.27) was considered, and it was used that r = (R/2)
√

ξ2 + η2 − 1.
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6.6.4 Calculating the photoelectron spectrum

It is important to obtain relevant information from ab initio calculations that are also

routinely acquirable with experimental setups. The measurement of the fully differential

momentum distribution of the ionized electron, i.e., of the photoelectron spectrum (PES),

represents an effective tool that gives us the most complete information regarding the ion-

ization of laser irradiated targets. In these experiments [82, 83], the ejected electrons are

directed in an angle resolved time of flight mass spectroscopy, and their initial momenta and

ejection angles are measured.

Since, the laser induced PESs can be routinely obtained in experiments, and carry rele-

vant information about the studied system, this work focuses mainly on the calculation of

this observable quantity.

The photoelectron spectra is obtained by projecting the propagated TDWF onto the

exact scattering states of the laser targeted system:

dP

d~k
(~k; t) =

∣
∣〈Ψ~k(~r)|Ψ(~r; t)〉

∣
∣2 , (6.63)

where Ψ~k(~r) is the continuum wave function representing the exact scattering state of the

ionised electron with momentum ~k. The solution of Eq. (6.63) gives the probability density

of finding an electron with momentum inside the [~k,~k + d~k] interval at the time moment t.

Due to the two-center nature of the diatomic molecule, the exact scattering states can be

obtained only via numerically laborious procedures [84] (they do not have analytical form),

hence in the present approach I have considered the one-center Coulomb wave functions

which became identical with the exact continuum functions in the asymptotic region. This

means that the used approximate states differ significantly from the exact ones only at the

vicinity of the two nuclei, but they are the same at large electron distances. By calculating

the ejected electron’s position according to Equations (6.60)-(6.62) the obtained r(t) distance

delivers us useful information regarding the departure of the ejected wave packet as a function

of time.

The approximate PES calculated using one-center Coulomb wave functions can be brought

near the exact one by further propagating in time the TDSE after the conclusion of the laser

pulse (T > τ), since the slow momentum electrons will also have sufficient time to move away

from that region (the neighborhood of the two nuclei) where their one-center Coulomb de-

scription is incorrect. A sufficiently large r(T )≫ R distance of the continuum wave packet

(the larger the ratio r/R, the smaller the difference between the exact and approximate

scattering states) may be used as an indicator for obtaining the convergent photoelectron

spectrum.

By taking into account the aforementioned considerations, the projection of the TDWF

onto the one center Coulomb wave function [Ψ~k(~r)→ ΨC(~k;~r)] was employed. On the other

hand, since the approximate scattering states |ΨC(~k,~r)〉 are not orthogonal to the bound
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states of the molecular target, and the |Ψ(~r; t)〉 may have contributions from the BSs after

the end of the laser pulse, undesired errors may appear in the PES image. In order to

eliminate these artificial errors from the TDWF the bound states were removed according

to Eq. (6.61) and the spectrum calculated for the continuum part of the wave function

Ψ(~r; t)→ Ψfree(~r; t) as
dP

d~k
(~k; t) =

∣
∣
∣〈ΨC(~k,~r)|Ψfree(~r; t)〉

∣
∣
∣

2

. (6.64)

The ΨC(~k,~r) Coulomb wave functions, which describe the one-center continuum states of

the electron with momentum ~k, are obtained by solving the stationary Schrödinger equation

for the hydrogen atom:
(

−∇
2

2
+

Z

r

)

ψ~k(~r) =
|~k|2
2
ψ~k(~r), (6.65)

where Z is the product of the electric charge of the electron and of the field source (Z = −1
in the case of H), while |~k|2/2 is the asymptotic energy of the electron.

The Coulomb wave function has the following analytical form [72]:

ΨC(~k,~r) =
1

√

(2π)3
1

kr

∞∑

l=0

(2l + 1)ileiσlFl(γ, kr)Pl(cos θ~k,~r), (6.66)

where σl = Arg [Γ(l + iγ + 1)] is the Coulomb-phase shift with the γ = (e2/4πǫ0~)ZAZB(me/k)

Sommerfeld parameter (in atomic units: γ = ZBZB/k) and Γ is the gamma function.

Fl(γ, kr) represents the regular Coulomb function and θ~k,~r the angle between the electron’s

position vector (~r) and its momentum (~k). The last term in Eq. (6.66) is the Legendre

polynomial and can be expressed in terms of the spherical harmonics as

Pl(cos θ~k,~r) =
4π

2l + 1

l∑

m=−l

Ylm(θ, ϕ)Y
∗
lm(θk, ϕk). (6.67)

where Ylm represents the spherical harmonic, while θk the polar angle and ϕk the azimuthal

angle of the momentum vector ~k. By substituting Eq. (6.67) into Eq. (6.66) one obtains

the Coulomb wave function as a function of the polar coordinates of the electron’s position

vector ~r ≡ {r, θ, ϕ} and of its momentum ~k ≡ {k, θk, ϕk}:

ΨC(~k,~r) =

√

2

π

1

kr

∞∑

l=0

l∑

m=−l

ileiσlFl(γ, kr)Ylm(θ, ϕ)Y
∗
lm(θk, ϕk). (6.68)

Calculating the PES when the laser field is polarised along the molecular axis

The calculation of the PESs will be simplified if the angle between the incident’s electric

field and the molecular axis is zero (θR=0). In this case the couplings between different Ψ(m)
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channels in the TDSE will not be present (sin θR = 0), and only the initial channel of Ψ(m=0)

will remain populated. This is happening due to the fact that the initial |1sσg〉 state obeys

cylindrical symmetry, thus it is ϕ independent, i.e. m = 0.

By introducing the notation A(~k; t) for the transition amplitude and using the previous

statements the projection onto the continuum states gets simplified:

A(~k; t) = 〈ΨC(~k)|Ψfree(t)〉 =
〈

ΨC(~k)

∣
∣
∣
∣

∞∑

m=0

Ψ
(m)
free(ξ, η; t)

eimϕ

√
2π

〉

=
1√
2π

〈

ΨC(~k)

∣
∣
∣
∣
Ψ

(m=0)
free (ξ, η; t)

〉

, (6.69)

where inside the scalar product only the ξ and η integrations have to be calculated. Moreover,

for this laser-molecule geometry the calculation of the Coulomb wave function is reduced as

well, where in the general form [Equation (6.68)] the sum over m is eliminated, next to the

ϕk dependence:

ΨC(k, θk; r, θ) =

∞∑

l=0

√

2

π

1

kr
ileiσlFl(γ, kr)Yl0(cos θ) Yl0(cos θk). (6.70)

By writing the transition amplitude formally in the expansion of the spherical harmonics

Yl0(cos θk):

A(k, θk; t) =
∞∑

l=0

al(k; t)Yl0(cos θk)
∗, (6.71)

the expansion coefficients

al(k; t) = (2π)

∫

dξ

∫

dη
R3

8
(ξ2 − η2)

[√

2

π

1

kr
ileiσlFl(γ, kr)Yl0(cos θ)

]∗
Ψ

(0)
free(ξ, η; t)√

2π
=

=
R3

4

∫

dη

∫

dξ(ξ2 − η2)
[
1

kr
ileiσlFl(γ, kr)Yl0(cos θ)

]∗

Ψ
(0)
free(ξ, η; t) (6.72)

are calculated by using the Gauss quadratures:

al(k; t) =
R3

4

∑

i

ω
{ξ}
i

∑

j

ω
{η}
j (ξ2i − η2j )

[
1

kr
(−i)le−iσlFl(γ, krij)Yl0(cos θij)

]

Ψ
(0)
free(ξi, ηj ; t),

(6.73)

where the following substitutions were also considered: rij = R
2

√

ξ2i + η2j − 1; cos θij =

ξiηj/
√

ξ2i + η2j − 1.
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6.7 A possible extension of the method: the inclusion

of the nuclear motion

The method presented in this section for describing the laser induced EWP dynamics

inside the molecule can be further advanced by the inclusion of the nuclear dynamics. When

considering larger wavelength radiations (e.g., IR regime) depending on the field strength

next to the rapid motion of the light electron the laser will also exerts the nuclei to start to

vibrate.

In these circumstances the whole molecular system is described by the molecular Hamil-

tonian, which governs the time evolution of the molecular wave function:

i
∂

∂t
Ψmol(~R,~r; t) =

[

Ĥe + Ĥn + Ûint(t)
]

Ψmol(~R,~r; t), (6.74)

where ~R are the nuclear coordinates, Ĥe = −∆e/2−ZA/rA−ZB/rB is the electronic Hamil-

tonian with rA and rB being the distances measured from the nuclei with positive electric

charge ZA and ZB, respectively. Ûint(t) describes the interaction with the laser field, while

the nuclear part of the Hamiltonian reads as

Ĥn = − ∆A

2MA
− ∆B

2MB
+
ZAZB

R
, (6.75)

where M1 and M2 represent the mass of the two nuclei. In the kinetic energy terms of

the nuclei [first and second term of Eq. (6.75)] ∆A,B = ∂2/∂ ~R2
A,B is the Laplace operator,

while the last ZAZB/R expression gives the electrostatic potential that repels the two nuclei

separated by distance R.

Since the motion of the light electron is much pronounced (much faster) than of the

nuclei, the Bohr-Oppenheimer approximation can be considered, and the time-dependent

Close-Coupling (TDCC) method applied on the molecular wave function

Ψmol(~R,~r; t) =
∑

i

∑

vi

divi(t)ϕi(~r, R)χvi(R), (6.76)

where the dynamics of the nuclei is detached from the motion of the electron. Moreover,

in this TDCC approach the the molecular wave function is expressed in terms of χvi(R)

molecular vibrational states and ϕi(~r, R) electronic states, while the time dependence is

separated into a separate variable (expansion coefficient) divi(t). This picture takes into

account that the motion of the nuclei is instantaneously effected by the actual distribution

of the electron cloud that surrounds the molecule. It considers that the vibration of the

nuclei (χvi(R)) follows the potential energy curve (or potential energy surface in the case

of multi atomic systems) of the molecule defined with the function E0(R), where E0 is the

electron’s lowest energy in the spatial configuration R (i.e., when the distance between the

two nuclei has the value R). In addition to this, during the interaction with the external field
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laser induced nuclear vibrations may appear also on higher energy curves (electron energy

levels), after a χvi → χvj (j > i) transition was induced by the field. From the other point of

view, as the nuclei change their position due to the modified electron distribution, the light

electrons will adjust quickly their dynamics to the new nuclear configuration.

By introducing the molecular wave function Eq. (6.76) into the Schrödinger equation

[Eq. (6.74)], and performing two integrations of the form
∫
dRχ∗

vj
(R) and

∫
d~rϕ∗

j(~r;R) on

both sides of the equation, the following expression for the expansion coefficients can be

deduced (identical to the TDCC solution of the molecular TDSE):

i
∂

∂t
djvj(t) = Ej(R)djvj(t) +

1

R
djvj(t) +

+
∑

i

∑

vi

divi(t)

∫

d~rϕ∗
j(~r)

∫

dR χ∗
vj
(R)

[

− ∆A

2MA
− ∆B

2MB

]

ϕi(~r)χvi(R)

︸ ︷︷ ︸

Tjvj ivi

+

+
∑

i

∑

vi

divi(t)

∫

dRχ∗
vj
(R) 〈ϕj|Ûint(t)|ϕi〉(R) χvi(R)

︸ ︷︷ ︸

Ujvj ivi
(t)

, (6.77)

where the 〈χvj (R)|χvi(R)〉 = δvivj and 〈ϕj|ϕi〉 = δij orthonormal properties have been used.

By taking into account that dynamics of the molecule can be modelled by the vibration of the

system’s reduced mass (µ) which is attached to a fixed wall by a ’string’, the whole motion

of the system can be included in the electron’s kinetic potential by using the substitution

me → µ, hence the nuclear kinetic energy term can be avoided from Eq. (6.77): Tjvjivi → 0.

As a consequence, the coupled differential equation leads to the simplified form of:

i
∂

∂t
djvj(t) =

[

Ej(R) +
1

R

]

djvj(t) +
∑

i

∑

vi

divi(t)

∫

dRχ∗
vj
(R) 〈ϕj|Ûint(t)|ϕi〉(R) χvi(R).

(6.78)

The crucial part of the present method is to obtain accurate and convergent |ϕj(R)〉 electronic
bound states for a wide array of discretized Ri internuclear separation points located in the

Ri ∈ (0, Rmax) range (Rmax < ∞), and also precise values for the Ej(R) energy curves.

Provided that, the calculated electronic bound states are the correct ones, also the laser

induced transition amplitudes

〈ϕj|Ûint(t)|ϕi〉(R) = 〈ϕj|~r · ~E(t)|ϕi〉(R) (6.79)

calculated within the dipole approximation and by using length gauge can be considered

accurate (representing the essence of the present approach). Both the ’exact’ bound states

and the accurate energy curves can be obtained after performing rigorous convergence tests

by orthogonalization the efficiently constructed Ĥ(0) Hamiltonian matrix [i.e., Eq. (6.30)

after setting t→ 0].
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7.1 Numerical details

This section is dedicated to the numerics, where first, the numerical parameters of the

spacial discretization of the wave function and Hamiltonian will be reviewed. Second, in

parallel with the previous one, the numerical details regarding the time propagation will be

discussed.

Since in the case of grid representation based numerical simulations the whole laser

induced dynamics of the investigated quantum system is restricted into a finite space, i.e.,

simulation box, the size of this ’box’ should be correctly chosen. This means that the grid

size should be sufficiently large in order to include all the relevant physical processes taking

place during the action of the oscillating field. Considering that the used laser field is an

ultrashort XUV pulse and by taking into account the values of the ionization potential of

the molecule in the range R ∈ (1 a.u., 4 a.u.) at the first attempt the size of the simulation

box was considered to be sufficiently large when rmax ≃ 600 a.u., which value is directly

related to the ξmax parameter through the relation ξmax = 2rmax/R. The space in which the

η = (rA − rB)/R coordinate is chosen is given by definition: η ∈ [−1, 1]. In order to avoid

the singularities appearing in the Hamiltonian operator when η = ±1, in the first and last

finite element (FE) of the η grid the Gauss-Radau quadrature points (only one endpoint of

the FE is a gridpoint) were used. For the remaining (non-edge) η FEs’ both edge points

were chosen as quadrature points: resulting that ηFEi
Nfun
≡ η

FEi+1

1 . This was done by using

the so-called Gauss-Radau quadratures. The similar considerations were done in the case

of the ξ grid, whereas only for the first FE were used Gauss-Legendre points to avoid the

singularity at ξ → 1.

Another important parameter is the grid density of both the ξ and η grids. The density

of the ξ grid was deduced from the desired ∆r input parameter, where for the total number

of ξ gridpoints the Nξ is given as the integer part of rmax/∆r. From Nξ and from the fixed

number of the interpolating polynomials N
{ξ}
fun = N

{η}
fun = 7 the total number of FEs on the ξ

grid was obtained. These ξ FEs were distributed evenly by using OpenMPI parallelization
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on a multi-CPU platform. If the obtained value for the total number of ξ FEs could not

be allocated evenly on the requested number of CPUs, the value of rmax was increased until

this optimal partition could have been performed. For the η grid 0.1 sized FEs were used,

which gives an average ∆η = 0.1/N
{η}
fun ≃ 0.014 average η grid density.

During the numerical integration of the time-dependent wave function, depending on the

laser field’s parameters, at a given time moment the larger velocity part of the continuum

electronic wave packets may reach the edges of the simulation box. Since, in the present case

the prolate spheroidal coordinates were used, this may occur only at a single endpoint, at

the truncated value of the ξ coordinate space, i.e. at ξ = ξmax <∞. Reaching the boundary

the wave function will be reflected, which will produce unphysical features in the calculated

photoelectron spectra. In order to eliminate these undesired reflections from the edge of the

simulation grid a complex absorbing potential (CAP) was introduced which was defined as:

VCAP = −i exp
[

αabsorb log cos
ξ − ξcut

ξmax − ξcut

]

, for ξ ≥ ξcut, (7.1)

where by setting ξcut = 95%ξmax we ensured that the CAP acts only on the outermost part

of the TDWF. The value of the absorbing coefficient was set to αabsorb = 106. The proper

size of the ξ simulation box was ensured by keeping the norm of the absorbed part of the

wave function below 10−10.

7.2 Electronic bound states and energies of H+
2

The starting point of our investigation lies in the fact that for the correct solution of

the TDSE, first, the accurate initial value of the wave function should be obtained [i.e., the

electronic ground state’s wave function: Ψ(~r; t = 0) = ϕ0 = ϕ1sσg
(~r)]. Moreover, in order

to acquire information (during the time propagation procedure) related to the population

of the excited bound states, also the wave function and energies of these states should be

obtained with a sufficiently high accuracy.

In order to fulfill these requirements, the discretized version of the field-free electronic

Hamiltonian (6.21) matrix is orthogonalized after setting t→ 0 in the matrix from of Ĥ(t)

[Eq. (6.30)], i.e., when the laser field is absent: U(t) = E(t) = 0. In order to obtain correct

results the optimal values for the numerical parameters of the wave function representation

should be identified, i.e., the optimal values of ∆r, ∆η, and rmax. During the diagonalization

of the large-sized (typically consisting of more than 106 × 106 elements) time-independent

H(0) Hamiltonian matrix using parallelized procedures built in the SLEPc library pack-

age [85] a few hundreds of bound state wave functions could be obtained in a relatively short

time: ranging from few tens of minutes up to several hours. Obviously, the requested CPU

time for the diagonalization procedure practically depends on the size of the matrix (i.e., on

the grid size and grid density), the number of requested eigenfunctions, and the number of

employed CPUs.
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7.2.1 Identification of bound state symmetry

Once the requested bound state wave functions were obtained, the symmetry property

of each eigenstate was identified in the following way. First, the calculated complex eigen-

functions were rotated into the real plane by applying on them the

R̂(−αj) = e−iαj(~r) (7.2)

rotation operator, where αj = Arg[ϕj] = −ǫj 1 is the argument of the ϕj(~r) complex function

associated with the bound state with energy ǫj .

Since αj has the same value for all ~rk → {ξk, ηk} gridpoints, after the multiplication with

R̂(−αj) each complex number written in the general form of ϕi(~rk) = |ϕi(~rk)| · eiArg[ϕi(~rk)]

will have only real part (the imaginary part vanishes). Second, the number of the radial (nξ)

and angular (nη) nodal planes of each rotated

ϕRE
j (~r) = R̂(−αj)ϕj(~r) (7.3)

real wave function was counted in the prolate coordinates, from which the symmetry of

the investigated bound state was directly obtained: i.e., the principle and the azimuthal

quantum numbers are given by the relations n = nξ+nη+1 and l = nη, where nξ and nη are

the number of nodal planes counted inside the intervals ξ ∈ [1, ξmax → ∞] and η ∈ [−1, 1],
respectively. In the prolate spheroidal coordinate system these symmetry properties translate

to the WF patterns illustrated in Fig. 7.1/(I), where the ”+” indicates positive, while the

”-” sign negative ϕRE wave function values. The Fig. 7.1/(II) shows the contour-plot of the

calculated 4dσg state’s wave function in the (ξ, η) coordinate system.

In Figure 7.2 the ϕRE
j (~r) wave functions of the first six energy level bound states are

plotted along the 0z′ molecular axis for the R = 2 a.u. internuclear separation [the nu-

clear coordinates are: (x, y, z) ≡ (0, 0,±R/2)]. The plots were done after the electronic

wave functions had been transformed from the prolate spheroidal coordinate system into the

Cartesian coordinate system. As it was expected the wave functions are concentrated in the

vicinity of the two nuclei, and by the increase of the bound energies the spread of the wave

functions also increases. A second straightforward observation is that at infinite distances

(r → ±∞) all the wave functions tend to zero. By considering the symmetry properties of

the wave functions, it can be observed, that the wave functions of the ungerade states (2pσu,

3pσu, etc.) cross the 0z′ molecular axis at the value z′ = 0 (i.e., rA = rB = R/2) where

ϕj(z
′ = 0) = 0, while for the gerade states (1sσg, 2sσg, 3sσg, 3dσg, etc.) when z′ = 0 the

wave functions have non-zero values.

1This property can be proven by solving the time-independent Schrödinger equation i ∂
∂t
ϕ = Ĥ0ϕ which

leads to ϕ(~r; t) = e−iĤ0(t−t0)ϕ(~r; t) → ϕj(~r; t) = e−iǫj(t−t0)ϕj(~r; t0). This results that the phase of the
bound state wave function is independent on the coordinate. In the expression of the coordinate independent
argument the t = t0 + 1 time moment was considered.
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Figure 7.1: (I) The distribution of positive and negative regions in the (ξ, η) prolate
spheroidal coordinates of the ϕRE wave functions starting from the symmetry n = 1 up-
to 4 (inclusive). (II) The contour-plot image of the calculated 4dσg state’s wave function
(R = 2 a.u.).

7.2.2 The convergence of bound state energies and wave functions

All these bound states and bound state energies were obtained after performing rigorous

convergence tests as illustrated in the table (Fig 7.3) below, where the results obtained for

the equilibrium distance R = 2 a.u., for a smaller R = 0.1 a.u. and for a larger R = 12 a.u.

internuclear separation are shown. The convergence of the eigenfunctions are illustrated only

for the case of equilibrium distance (R = 2 a.u.) and for the ground (1sσg), the first excited

(2pσu) and for two other low-lying bound states (4dσg, 4fσu) as a function of average radial

grid density.

The results were considered convergent, if the relative differences of the calculated eigenen-

ergies in the ith step satisfied the condition δErel < 10−4, where

δErel =
|E (i) − E (i−1)|
|E (i)| . (7.4)

The (i+1)-th step labels the values calculated with the new parameters obtained by modify-

ing the parameters used in the i-th step: i.e., in the case of grid density parameters, ∆r and

∆η were gradually decreased, while in the case of the simulation box size, rmax was gradually
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Figure 7.2: The first six electronic bound states’ wave function and bound energies of the H+
2

molecule obtained by diagonalizing the field-free Hamiltonian for the equilibrium internuclear
separation R = 2 a.u.. The plots show the ϕi(~r) wave functions rotated into the real plane.

increased.

By looking at the wave functions in Figure 7.4, at first sight it can be observed that a

very fast convergence as a function of ∆r was obtained at the tails of the wave functions,

i.e., at distant regions from the nuclei. This high convergence was less pronounced in the

vicinity of the two cores especially in the region between the two protons. By zooming into

these closer regions, as illustrated in the insets of the 1sσg ground state [Fig 7.4(a)] and

4fσu excited state [Fig 7.4(d)], a convenient convergence was confirmed for these cases as

well, proving that the calculated bound states’ wave functions can be obtained with high

accuracy by working with the optimal numerical parameters.

By taking into account the presented results, we may conclude that the implemented

numerical method is applicable for calculating high accuracy convergent eigenenergies and
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Figure 7.3: The energy convergence of the ground state (1sσg), the first excited state (in the
R = 2 a.u. configuration: 2pσu) and for two other low-lying bound states (4dσg, 4fσu) as a
function of the numerical parameters for different internuclear separations: R ∈ {0.1, 2, 12}
atomic units. The highlighted rows correspond to the convergent values within the ∼ 10−5

relative error.

eigenfunctions [86] of the H+
2 molecule, providing accurate initial state wave function for the

time-dependent Schrödinger equation as well. Based on this argument, further essential cal-

culations become feasible: such as the calculation of transition dipole moments [Eq. (6.79)]

or potential energy curves (in Figure 7.5 of the next subsection).
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z [a.u.] z [a.u.]

Figure 7.4: The convergence of the equilibrium (R = 2 a.u.) electronic wave functions along
the internuclear axis as a function of the average radial grid density ∆r. (a) The 1sσg ground
state of H+

2 and its zoom image at the vicinity of z = 0; (b) the first excited state 2pσu;
(c) 4dσg state ; (d) 4fσu and a zoom image at the vicinity of z = 0 (rmax = R + 48 a.u.,
∆η = 6× 10−3).
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Potential energy curves and electronic transition dipole moments

The potential energy curve of the H+
2 molecule for a given electronic state can be cal-

culated as E(R) + 1/R (with the last term giving the proton-proton repulsion energy) were

compared to the reference data found in the literature [87]. As one can see the energies

obtained within the present model fit perfectly the data obtained by the other approach,

where a B-spline DVR method was used for the representation of the electronic wave func-

tion. As it was expected, only the 1sσg state has a minimum point at R = 2 a.u., which gives

the equilibrium distance of the molecule. On the higher states the energy of the molecule

constantly decreases, which brings the molecule into a dissociative state (since R will tend

to infinity).

Figure 7.5: The calculated energy curves for different bound states plotted next to the
reference data (colored solid lines) [87].

Another application of the convergent wave functions is the calculation of the electronic

transition dipole moments, which are computed by evaluating the following integral for the

transition matrix element:

~µji = 〈ϕj|(q~r)|ϕi〉 = −〈ϕj |~r|ϕi〉 = −
∫

d~r ϕ∗
j(~r)~rϕi(~r). (7.5)

The calculation of these values represents the essential part of the TDCC approach presented

in the final part of the previous section, where the possibility of the inclusion of the nuclear

dynamics was discussed. The values of the transition dipole moments

~µji = −〈ϕj |x|ϕi〉̂i− 〈ϕj|y|ϕi〉ĵ − 〈ϕj|z|ϕi〉k̂ (7.6)
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were calculated using the prolate spheroidal coordinates [x =
√

(ξ2 − 1)(1− η2) cos(ϕ),
√

(ξ2 − 1)(1− η2) sin(ϕ), z = (R/2)ξη] for different internuclear configurations and listed

here for the transition from the |ϕi〉 ≡ |1sσg〉 ground state to the first excited |ϕj〉 ≡ |2pσu〉
state. The aforementioned transition is one of the most relevant quantity in the one pho-

ton excitation process. In this case, since ϕ1sσg is an even (gerade), while ϕ2pσu an odd

(ungerade) function only the integral

~µ2pσu,1sσg = −〈ϕ2pσu|z|ϕ1sσg〉k̂ = −R
2
〈ϕ2pσu|ξη|ϕ1sσg〉k̂ (7.7)

will give non-zero value as a result, since the product of the z = (R/2)ξη odd function

with the odd product of ϕ2pσu(ξ, η)
∗ · ϕ1sσg(ξ, η) results in a even integrand; while when

calculating the x and y components of ~µ the three-functions-product will be odd, because x

and y are even functions of η. The transition dipole moments from Eq. (7.7) calculated for

different internuclear distances are listed in Table 7.1. As it can be seen, by increasing the

internuclear distance this coupling is increased, meaning that the laser induced transition

from the ground to the first excited state will be more pronounced for larger proton-proton

distances where the energies of the two states are getting closer to each other (as it can be

observed on the potential energy curves in Fig. 7.5).

Table 7.1: The electronic transition dipole moment calculated for the first two energy level
states (µ2pσu,1sσg

) as a function of proton-proton distance R.

Internuclear distance Transition dipole moment
R (a.u.) [1sσg → 2pσu] (a.u.)
0.10 0.38857
0.20 0.39730
0.40 0.45116
0.60 0.51956
0.80 0.59599
1.00 0.67533
1.50 0.86769
2.00 1.04034
2.50 1.23582
3.00 1.43237
3.50 1.64334
4.00 1.86835
5.00 2.35395
6.00 2.86733
7.00 3.38807
8.00 3.90586
9.00 4.41810
10.00 4.92524
11.00 5.42828
12.00 5.95518
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7.3 XUV laser induced electron dynamics - Photoex-

citation of H+
2

In the present case, where the main and final goal is to investigate the physics behind

the creation of the holographic image of the H+
2 molecule created with photoelectrons, it

is more appropriate to restrict our calculations to laser pulses having shorter wavelengths,

i.e., by considering XUV radiations. This statement holds, since in the case when larger

wavelengths are used also the field’s periods are longer, hence more electron wave packets

will be emitted in the continuum on different time moments of the same optical half-cycle

resulting in a rather complex electron trajectory mechanism and interference patterns, which

are more difficult to be deciphered.

In accordance with this, a two-cycle laser field having angular frequency ωXUV = 0.4445

a.u.t.−1 was chosen from the XUV regime, where ω corresponds to a λ ≈ 100 nm (ν =

2.92 PHz=2.92 × 1015 s−1) central wavelength radiation and a.t.u. stands for the ”atomic

unit of time” (in the following abbreviated simply by ”a.u.”) equal to 24.2 as (= 24.2×10−18

s). The temporal profile of the linearly polarized laser field’s electric component corresponds

to the expression already given in Equation (6.11)

~E(t) =







ε̂E0 sin (ωXUVt+ ϕCEP) sin
2
(
πt
τ

)
, if t ∈ [0, τ ],

0, otherwise,
(7.8)

where ǫ̂ = (0, 0, ǫz = 1) is the polarization vector of the electric field, the pulse duration τ

was fixed to the value 28.27 a.u (∼ 684 as), while in order to obtain a symmetric waveform in

time (see Fig. 7.6) the carrier-envelope phase was fixed to ϕCEP = −ωXUVτ/2−π/2 ≃ −7.85.

Figure 7.6: The temporal shape of the laser’s electric field component with E0 = 0.5 a.u.
field amplitude. The angular frequency of the laser field is ωXUV = 0.4445 a.u., the pulse
duration τ = 28.27 a.u., while ϕCEP = −7.85.
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For such an ultrashort laser pulse the motion of the heavy nuclei, which is relatively slow

next to the rapid movement of the light electron, can be safely neglected, and hence the

fixed nuclei approximation employed. In order to obtain useful information regarding how

the value of the internuclear distance (R) influences the photoelectron spectrum of the target,

we chose three different R values for this study. The following investigations were carried

out for a smaller internuclear distance R = 1 a.u., for the equilibrium distance R = 2 a.u.,

and for a larger proton-proton separation of R = 4 a.u..

The ionization energies of the electron emitted from the 1sσg ground state of the consi-

dered internuclear configurations were calculated and listed in Table 7.2.

Table 7.2: The ionization energy of the electron from the 1sσg state for different internuclear
separations.

R [a.u.] Ionization energy - Ip [a.u.]
1.0 1.45178631
2.0 1.10263421
4.0 0.7960848

The laser induced photoexcitation processes as a function of field amplitude were inves-

tigated [88] for these three different internuclear separations. Since, for the dynamics of the

bound states’ population a similar behavior was observed in all the three cases, here only

the occupation probabilities (OPs) obtained for the R = 2 a.u. (equilibrium) distance will

be discussed in more details. In order to follow this line of inquire, the H+
2 molecule in

its equilibrium configuration was irradiated with laser fields having the same frequency and

pulse duration, but different peak intensities [i.e., different E0 electric field amplitudes, see

Figure 7.7(a)].

Once the accurate wave functions of the bound states were obtained by employing the

numerical methods presented in the previous - theory - section, the population dynamics of

numerous (∼ 100− 200) bound states were investigated and the occupation probabilities of

a few low-lying states plotted on Figure 7.7(b).

The used field intensities E0 ∈ {0.25, 0.5, 0.75, 1} a.u. were selected in such a way that

the Keldysh parameter γ [Eq. (3.7)] was kept near the value of 1, i.e., not far from the

transition zone between the multi-photon and tunneling regime, since this region is where

the most interesting physical processes are taking place, and which represents one of the

most investigated area (especially in plasmonic field enhancement studies [82, 83]). In the

limit of extremely high field intensities (γ ≪ 1) already the maximum of the first optical

half-cycle would fully ionize the target, thus further ejected electron wave packets would be

very improbable to be emitted on a later time moment of the oscillating field. Therefore,

this will result in a very ’poor’ or featureless photoelectron holographic image of the target.

By taking a quick look at the population dynamics of the first four low-lying bound

states in Figure 7.7(b), it can be seen that for the case of the relatively high field intensity

(E0 = 1 a.u.; γ ≈ 0.7), already in the vicinity of the first important field maximum at time
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t ≃ 8 a.u., the ground state is almost totally depleted, i.e. its occupation probability has

fallen below the value 10−1. In parallel to this, the higher level bound states were rapidly

populated.
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Figure 7.7: (a) The temporal shape of the laser’s electric field component for different E0

field amplitudes. (b) The occupation probabilities on logarithmic scale of the first 4 bound
state as a function of time for different electric field amplitudes and for the fixed internuclear
distance R = 2 a.u..
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The drastic decrease of the 1sσg state’s population, next to the rapid increase of the higher

energy states’ population, suggests very fast electron dynamics and excitation processes.

Moreover, as it can be observed, the second (main) field maximum empties almost totally

the bound state: see the OPs near the time moment 18 a.u., where the population of each

state is lower than 10−4. On the other hand, when E0 is low and γ ≫ 1, only few electrons

will be emitted, mainly via single or multi-photon absorption mechanisms, which also will

lead to a low contrast holographic image created by the photoelectrons. However, in our

case when using the given parameters (electric field amplitudes) for the laser pulses, the

value of γ remains confined in the vicinity of 1, therefore neither the premature (ultrafast)

full ionization of the target, nor the low signal of the ejected EWPs would occur.

Next to the aforementioned behaviour of the population dynamics calculated for the high

intensity E0 = 1 a.u. radiation field, further important observations can be made. First, it

can be seen that independently from the considered field amplitude, the 2pσu state starts

to be populated much earlier than the lower symmetry state 2sσg . The former starts to be

observable within the [10−4 : 1] range already after 1 atomic (time) unit the laser field was

switched on, while the later appears in the logarithmic scale only around t = 5 a.u.. This

primary and dominant 1sσg → 2pσu transition can be explained by looking at the symmetry

properties of the two functions: the angular momentum quantum number of the first state

is l = 0, while in the second (excited) state l = 1. By taking into account the selection rules

for optical transitions the change ∆l = 1 of the angular momentum quantum number via

the excitation process is an optically allowed transition, which can be induced by a single

photon absorption (excitation). For the 1sσg → 2pσu transition ∆l = 0, which requires the

absorption of an even number, at least two, photons. This process can be induced provided

that a higher photon density is present in the radiation field, i.e., at higher electric field

values. Indeed, this behaviour was shown for the rise of the OP of the 2sσg state, which

begun to exceed exponentially the value of 10−4 when the | ~E(t)| started to approach its

first maximum between 5 and 7 a.u.. The similar rapid increase around this time interval

was observed for the 3rd excited 3pσu state, which by observing the continuous decrease of

the ground’s population is mainly due to 1sσg → 3pσu excitation. As the external electric

field stops increasing, i.e., after it reached its first maximum at t ≈ 7.5 a.u. and it starts

to decrease, the population dynamics of the excited state’s seem to slow down between 7.5

and 8 a.u.. This is mainly due to the fact that for a given excited state an equilibrium

in the population transfer occurs, which is the result of two opposite population transfer

directions. First, the OP of the excited state is increased by two distinct factors: (i) by

further excitations from the lower states (mainly from the ground) which processes, however,

have slowed down since the 1sσg ”source” already was considerably emptied and because

the external field strength started to decrease; (ii) by the repopulation mechanisms from the

higher excited states. Second, the OP of the excited state is continuously decreased by the

laser field still present with a decreasing but not zero intensity. This behaviour can be more

easily observed in Figure 7.8 by looking at the linear scale of the 2pσu state’s OP around

96



7.3. XUV laser induced electron dynamics - Photoexcitation of H+
2

Figure 7.8: The occupation probabilities of different bound states during the interaction
with the laser field having electric field amplitude of E0 = 0.5 a.u.. The inlet shows the
magnified region near the end (τ = 28.27 a.u.) and shortly after the laser pulse (R = 2 a.u.).

the time moment 10 a.u. calculated for electric field amplitude E0 = 0.5 a.u.. As it can be

observed as the electric field strength started to decrease, the population dynamics for both

the ground and the first excited state has slowed down. However, as long as the ground

state still looses electrons, the OP of the first excited state remains practically constant

showing a slightly increase. This increase is more obvious when the electric field changes its

sign and starts to increase in the opposite direction. This will bring back the electron waves

previously driven in the other z > 0 direction. By this process a sudden increase of the bound

states OPs can be observed around t = 13 a.u., when the absolute value of the electric field

approaches its main maximum. These ultrafast ’jumps’ may be observed on both figures

(OPs on logarithmic and linear scales). On the second figure around t = 15 a.u. the OPs

of all the plotted bound states are almost zero. This occurs short time after the main peak

of the laser field (t = τ/2 ≃ 14.13 a.u.) was reached. The extreme depletion of the ground

state, and the low OPs of the excited states indicate dominant ionization processes occurring

at these high intensity values. Starting from this point the EWP dynamics already become

quite complex, since many ejected electrons are already driven along different trajectories

by the laser field in the continuum and also a few upper energy bound states remain slightly

occupied. As the external field starts to decrease again between 16 and 18 atomic units

of time, the observed OP dynamics on the logarithmic scale showed again a slowing down

manner. However, since until this moment the electron was already (mainly) ionized the

contribution of these excited states in the electron’s wave function is very small [see the
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10−4 − 10−2 OP values on Figure 7.7/(b) around t ∼ 16 − 18 a.u.]. The third larger lobe

of the electric field between the time moments 18 and 23 a.u. raises again slightly the OPs

which after the pulse intensity decreased again and later on when the laser pulse was switched

off remained with approximately the same OP values in the 10−3−10−1 range. These values

can be seen magnified in the case of the E0 = 0.5 a.u. field (see inset of Figure 7.8), where

it was proven that once the laser field was switched off at τ = 28.27 a.u. the OPs of the

bound states situated between 0 and 6 × 10−2 stayed constant (i.e., without the laser field

there is no coupling between the different states).

These small contributions of the OPs are seemingly negligible from the total electronic

wave function, which after the conclusion of the laser field dominantly populates the con-

tinuum states. Although, since for the description of the continuum states the approximate

Coulomb functions will be used, which are not orthogonal to the bound states of the H+
2

molecule, these small contributions should be eliminated from the total electronic wave func-

tion. In that cases when these removals are neglected or not a sufficient number of bound

states are subtracted from the wave function the presence of the remnant bound states will

bring unphysical features into the image of the photoelectron spectrum, as it will be seen in

the following section.
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7.4 Holographic Mapping of the H+
2 target

A considerable number of previous studies were done to investigate how the laser induced

Holographic Mapping of atomic targets is influenced by the parameters of the radiation

fields [43]. It was shown for noble gas atoms [45], that the features in the photoelectron’s

holographic image can be influenced by the laser field’s parameters. It was demonstrated

that the density of the minima and maxima in the holographic image is mainly determined by

the z0 maximum distance that the rescattering electron reaches (measured from the parent

ion) prior to the rescattering event. It was found that for larger z0 distances the density of

the interference pattern was higher, and that the z0 could be controlled directly with the

driving field. By increasing the intensity or wavelength of the laser radiation z0 was also

increased, hence the HM pattern density as well.

Beside this laser field dependence, another and more interesting finding was made, which

states that the features of the holographic image are also strongly influenced by the shape

of the Coulomb potential of the target, i.e., the profile of the local potential the scattering

electron meets along the returning path.

In order to bring novel information into this field of science the principle goal of this work

was to investigate how the molecular binding potential affects the image of the photoelectron

spectrum. For this purpose the simplest two center molecule (H+
2 ) was used, for which in

order to modify the Coulomb potential of the target different R internuclear separations

were considered: R ∈ {1, 2, 4} atomic units.

Table 7.3: The Keldysh parameter for the radiation field described by ωxuv = 0.4445 a.u.
and E0 = 0.5 a.u. for different R internuclear separations.

R Keldysh parameter

(a.u.) γ =
√

Ip/2Up
1.0 1.5148
2.0 1.3207
4.0 1.1217

For all considered internuclear separations the electric field amplitude of the used XUV

laser pulse (ωxuv = 0.4445 a.u.) was set to the value of E0 = 0.5 a.u. (2.57×109 V/cm), which

corresponds to I = 8.7 × 1015 W/cm2 intensity. For this case the values of the calculated

Keldysh gamma parameter are listed in the Table 7.3, which indicates that we are in the

transition region between the multiphoton and tunneling ionization.

Moreover, by looking at the sum of the Coulomb potential and the interaction energy

with the laser field, a sizable distortion of the Coulombic field (Fig. 7.9) can be observed at

the instant when the radiation field is at its peak value (at t = τ/2). In this given moment

a potential barrier with a larger width is created.
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Figure 7.9: The 1D profile along the 0z direction of the modified Coulomb potential calcu-
lated as the sum of the Coulomb potential and the interaction potential with the laser field
at the instant when the electric field is at its peak maximum value: E(τ/2) = E0 = 0.5 a.u..
The blue dashed line illustrates the force F

(
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)
= −zE

(
τ
2

)
= −zE0 exerted from the laser

field.

In the following the results obtained for the photoelectron spectra will be discussed,

preceded by a detailed study on how the convergent spectra are obtained by removing the

bound state contributions from the TDWF, and by further propagating in time (t > τ)

the wave function until this will reach those departed regions from the target, where the

convergent data calculated by the projections onto the approximate continuum states can

be considered exact.
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7.4.1 Calculating convergent photoelectron holograms

First by fixing the laser field’s parameter to ω = 0.4445 a.u., τ = 28.26 a.u. E0 = 0.5 a.u.

the photoelectron spectra for the R=1, 2, and 4 a.u. internuclear distances are calculated

according to Eq. (6.63) and compared. Since the scattering states used during the calculation

of the PESs were approximate ones, they introduced a certain amount of error into the

spectra, which errors could be eliminated by subtracting the contribution of the bound states

from the TDWF and by further propagating in time the wave function after the conclusion

of the laser field.

In order to show these errors can be reduced to minimal, first, it was investigated how the

number of subtracted bound states affects the photoelectron spectra, and second, how the

image of these spectra depends on the propagation time after the end of the of the radiation

field. The convergence tests for all considered internuclear separations were performed, and

a similar convergence behavior of the PESs was found for all R values. Here, the results

obtained for the R = 4 a.u. case will be presented in more details.

PES convergence as a function of bound state subtraction

Since the two types of investigation, namely how the bound state subtraction and the

propagation time influences the obtained photoelectron spectra, were performed in parallel,

and it was found that close to convergent results were obtained for each considered inter-

nuclear distance at time moment t = 5τ (measured from the beginning of the laser field).

The results calculated at this instance of time for the R = 4 a.u. proton-proton distance are

presented here. In Figure 7.10 the PESs obtained for different number of subtracted bound

states (NBS) are shown.

Figure 7.10: Photoelectron spectra as a function of electron momentum component parallel
(kz) and perpendicular (kx) to the laser polarization vector, calculated as a function of
subtracted bound state number (NBS) considered at time moment 5τ for the internuclear
separation R = 4 a.u.. (a) NBS = 0; (b) NBS = 5; (c) NBS = 20; (d) NBS = 80; (e) NBS = 140.

As one can observe in Figure 7.10 for low number of subtracted bound states in the image

of the PESs some unphysical concentric rings appear, which are gradually reduced by the

elimination of a higher number of BSs. The other features of the spectra are not modified

by increasing the number of removed states. This demonstrates that, these rings are the

direct consequence of the presence of the BSs of the H+
2 in the final TDWF, and they appear
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since they are not orthogonal to the used approximate scattering states. Mathematically the

projection of the TDWF onto these continuum states can be given as:

〈ψ~k|Ψ〉 =
∞∑

i=1

αi〈ψ~k|ϕi〉+ 〈ψ~k|Ψfree〉, (7.9)

where the |Ψ〉 =
∑∞

i=1 αi|ϕi〉+ |Ψfree〉 wave function was partitioned into a bound and a free

part with 〈ϕi|Ψfree〉 = 0 and αi = 〈ϕi|Ψ〉 6= 0; in the present case 〈ψ~k|ϕi〉 6= 0. If the exact

- computationally challenging to obtain - scattering states of the H+
2 have been considered

instead of the approximate ones, than 〈ψ~k|ϕi〉 = 0, and 〈ψ~k|Ψ〉 ≡ 〈ψ~k|Ψfree〉. Since in the

present approach this is not the case, the bound states have to be removed from the TDWF

by employing the Gram-Schmidt orthogonalization procedure where from the wave function

the relevant number of NBS bound states were removed according to

|Ψ̃free〉 = |Ψ〉 −
NBS∑

i=1

〈ϕi|Ψ〉
〈ϕi|ϕi〉

|ϕi〉, (7.10)

where for NBS →∞: |Ψ̃free〉 = |Ψfree〉. By doing so, and taking into account the orthonormal

property of the bound states 〈ϕi|ϕi〉 = δij, the projection of the |Ψ̃free〉 wave function onto

the continuum states reads as

〈ψ~k|Ψ̃free〉 =

∞∑

i=1

αi〈ψ~k|ϕi〉+ 〈ψ~k|Ψfree〉 −
NBS∑

i=1

〈ϕi|Ψ〉〈ψ~k|ϕi〉 =

=

∞∑

i=1

αi〈ψ~k|ϕi〉+ 〈ψ~k|Ψfree〉 −
NBS∑

i=1

(〈ϕi|Ψfree〉+ αi)〈ψ~k|ϕi〉 ≃

≃ 〈ψ~k|Ψfree〉 −
NBS∑

i=1

〈ϕi|Ψfree〉〈ψ~k|ϕi〉 = 〈ψ~k|Ψfree〉 (7.11)

As described in Eq. (7.9) the projection of the bound part of the TDWF onto single

center Coulomb wave functions is non-vanishing, and during the calculation of the PES

it is coherently added to the projection of the continuum part of the time-dependent wave

function leading to the concentric ring structure appeared in Figure 7.10(a). However, it was

proven that with gradual subtraction of the BSs from the TDWF the concentric rings start

to fade away: i.e., for NBS = 5 they are already significantly reduced [see Figure 7.10(b)],

while for NBS ≥ 20 they are barely visible.

This behavior is also observable on Figure 7.11 where the PES is presented as a function

of electron ejection angle θk (measured from the polarization vector of the laser field) for a

fixed electron momentum k = 0.5 a.u.. We see a significant change in the photoelectron

spectra as we increase NBS from 0 to 5, and then to 20, while for NBS ≥ 20 the changes in

the PES are negligible. After analyzing the spectrum at different fixed electron momentum

values, by scanning both the lower and higher momentum part of the PES, it was found that
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Figure 7.11: Ionization probability density at t = 5τ for the fixed k =0.5 a.u. momentum as
a function of the number of subtracted bound states for the internuclear distance R=4 a.u..

the significant differences between the results obtained for NBS ≥ 20 disappear.

Similar investigations regarding the convergence of the PESs were done for the other

internuclear distances as well (R = 1 a.u., and R = 2 a.u.), where a very similar behavior

was observed. However, as it was expected, it was found that with the decrease of R the

number of subtracted states required for a converged photoelectron spectra increased. This

can be explained simply by the fact, that for smaller R internuclear separation values, the

ionization potential is higher (recall Table 7.2), which results that after the conclusion of the

laser field a larger portion of the TDWF will be distributed among the various bound states.

Therefore, in order to eliminate as much as possible the undesired errors brought into the

image of the photoelectron spectra by the presence of these bound states, the PESs presented

in the following part of this work were calculated after a total number of NBS = 120 bound

states had been removed from the wave function.

PES convergence as a function of propagation time

In Figure 7.12 the photoelectron spectra calculated for R = 4 a.u. at different time

moments (t = τ , 3τ , and 5τ ; with τ being the duration of the laser pulse) is shown. A

noticeable change in the PES as a function of the propagation time can be observed for

small photoelectron momentum values (k ≤ 1 a.u.).

In contrast, for the high electron momentum part of the PES by increasing the propa-

gation time the changes in the spectra are barely observable. This difference between the

behavior of the two distinct parts of the spectrum can be understood based on the following

arguments. The difference between the one-center Coulomb wave functions and the exact

continuum (scattering) states of the H+
2 molecule is the largest in the immediate vicinity of

the target. Hence, the difference between the spectra calculated by using exact and approx-

imate states for describing the continuum electron will be the most pronounced when an

important part of the wave function is still in the area close to the nuclei. In other words,
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Figure 7.12: Ionization probability density calculated for the internuclear distance R = 4 a.u.
as a function of electron momentum component perpendicular (kx) and parallel (kz) to the
laser polarization vector calculated at time moments: (a) τ ; (b) 3τ ; (c) 5τ .

the projection error introduced by the the approximate continuum states is larger when the

freed electron wave packet is closer to the target.

These projection errors appearing in the low momentum part of the spectra can be re-

duced or totally eliminated by further propagating in time the continuum EWP after the

laser field was switched off. This goal can be achieved, since by increasing the propagation

time the freed electron wave packet will depart from the vicinity of the nuclei to those regions

of the coordinate space where the difference between the approximate and exact scattering

states is smaller and becomes negligible from the point of view of the PES calculations.

Another important remark, is that the low momentum part of the ejected EPWs will de-

part much slower from the target, so as it can be observed on Fig. 7.12(a)-(b), where by

propagating from the time moment t = τ to t = 3τ , the low momentum part of the spectra

(compared to the high momentum part) is more severely affected by the discussed projection

error.

These previously outlined arguments are also supported by the fact, that by increasing

the propagation time, the differences in the PESs visibly get more and more reduced. While

the changes between the PESs calculated at time moments t = 1τ and t = 3τ are clearly

identifiable, the difference between the t = 3τ and t = 5τ PESs gradually faded away,

and become less recognizable. In order to check how far the continuum wave packets were

departed after the completion of the laser field, we plotted on Figure 7.13 the value of the

electron’s expected distance 〈r〉, which practically measures the mean distance of the EWPs

from the center of mass of the system, i.e. from the origin. By comparing the expected

value of the electron’s distance to the values of the internuclear separations it can be seen

that even at the completion of the laser field, at time moment τ , the measured distances

are near the value of 20 a.u. (10 times the equilibrium internuclear distance), while at time

moment 5τ in each internuclear case this exceeds 120 a.u.. This observation suggests that

the major part of the EWPs are departed sufficiently far from the nuclei at these larger
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Figure 7.13: The expected position of the continuum (’free’) wave function as a function of
propagation time after the completion of the laser pulse.

time moment and presumably the use of the approximate scattering states are delivering us

reliable results.

More rigorous investigations may be done by taking cuts of the PESs along different fixed

k = |~k| momentum values from different parts of the momentum region. In Figure 7.14 the

photoelectron angular distribution as a function of propagation time is shown for a smaller

k = 0.2 a.u. and for two larger momenta values k = 0.5 a.u. and k = 1 a.u.. With the

increase of k a faster convergence was obtained, which is supported by the aforementioned

considerations, according to which the electrons having larger momentum values (i.e., higher

velocities) are departed further away from the nuclei - than those with smaller momenta - in

regions where the results obtained with the approximate scattering states would approach

more and more the exact results. Although, as one can observe in Figure 7.14(a) - where the

results for the slowest convergence were obtained - the PESs calculated starting from time

moment t = 4τ up to 5τ , t = 6τ slightly differ from each other.

The distinct behavior of the electronic wave packets with different momentum values can

be further highlighted by plotting the PES along a given θk electron ejection angle. This

was done for a fixed θk = 40◦ ejection angle in Figure 7.15 (i.e., the approximate direction

of the first maximum in Fig. 7.12), where the convergence as a function of propagation time

is shown. As one can clearly see, the larger momentum part (k > 1 a.u.) of the spectra

converged much faster (already at t = 2τ) than the lower part. For small electron momentum

values the convergence is not ’fully’ achieved even for t = 6τ propagation time value (see the

inset of Fig. 7.15).

In order to deliver reliable results for the photoelectron spectra two distinct possibilities
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Figure 7.14: The angular distribution of photoelectrons as a function of the propagation time.
Results are shown for R = 4 a.u. and for different electron momentum values: k=0.2 a.u.
(a); k=0.5 a.u. (b); k=1 a.u. (c).

remain. The first one relies in propagating even further in time the time-dependent wave

function until a ’full’ and also visibly observable convergence in the scale of the oy axis of

Fig. 7.15 is obtained for the smaller k values as well. However, not even the results obtained

with this approach will ever give a perfect match between the data points calculated at a two
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Figure 7.15: Segments of the photoelectron spectra for R=4 at different time moments and
for the fixed electron ejection angle θk = 40◦ in the range of k ∈ [0, 3] is shown, while in the
inset we show a zoom into the range of k ∈ [0, 1].

later time moments t′ = n ·τ and t
′′

= (n+1) ·τ (where n ∈ Z
+ being a large positive integer

number), since a small difference always will be present between the calculated curves (just

as it can be shown to be present also for the larger k > 1 momentum values after one zooms

more into the image of the curves of Fig. 7.15). Another drawback of this approach consists

in a numerical issue, that is, by propagating the TDWF even further in time those EWPs

which have the highest momenta at a certain time will reach first the edge of the simulation

box. At edge of the simulation grid (i.e., ξmax) these high momenta EWPs are absorbed

by the complex absorbing potential provided that the absorbing coefficient was set to a

sufficiently high value. If the absorbing coefficient was not chosen correctly reflections from

the boundaries may occur. Both the absorptions and reflections from the boundaries will

distort the higher momentum part of the PESs. In order to avoid these undesired numerical

artifacts, which would appear in the calculated photoelectron spectra, the coordinate space

simulation box should also be increased (i.e., to prevent absorptions and reflections at the

boundary). This translates to a non-negligible increase of the CPU time required for the

simulations.

The other, and implicitly a much more reasonable approach would be to introduce a

small valued error tolerance parameter that would characterize the quality of the PES con-

vergence, and to give the final results within a fixed accepted error tolerance value. By doing

so, the simulation box from the start of the time propagation (at t = 0 a.u.) should have

been set to a sufficiently large value, which guarantees that the PES convergence parameter

will be achieved before the accumulated WF absorptions at the boundaries does not exceed

an initially (arbitrarily) fixed value of 10−8. Since, the second approach seemed to be much

more numerically achievable and reasonable, it was favored instead of the first procedure,

and it was used to characterize quantitatively the convergence of the photoelectron spectra.
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Convergence parameter assigned to the calculated photoelectron spectra

In order to quantitatively describe the convergence of the PES, the parameter

E(t) =
∫ ∫

dkxdkz|P (kx, kz; t)− P (kx, kz; τ)|
∫ ∫

dkxdkzP (kx, kz; τ)
, for t > τ. (7.12)

was introduced, which measures the relative difference between the spectrum calculated at

the end of the laser pulse (in time moment τ) and the PES calculated at a later time moment

t > τ . As it was assumed and expected, it was observed that E(t) exponentially converges

towards an asymptotic value E∞. This value can be obtained by fitting the calculated E(t)
data points with a function having the analytical expression of

Efit(t) = E∞ − βe−αt, α, β ∈ R
+, (7.13)

where the positive real numbers α and β, next to the value of E∞ need to be obtained. The

fitting procedure was carried out for each internuclear separation considered in the present

section, and the ER∞ parameter determined for each case. The estimated relative error of the

PES, i.e., the convergence parameter, was defined as

δRconv(t) = ER∞ − ER(t). (7.14)

In Figure 7.16 this estimated relative error parameter is plotted as a function of time

along with its exponential fit (βe−αt) for the considered proton-proton distances. An excellent

agreement was found for each internuclear separation between the δRconv curves and the used

exponential fitting functions, which confirms the assumed exponential decrease behavior of

the projection error as a function of time. Figure 7.16 indicates an error estimate below the

value of 0.5% for each internuclear separation at the propagation time moment 5τ .

Since this small remaining error affects mostly the lower momentum part of the photo-

electron spectra (as it was seen in Fig. 7.15) and by taking into account that the dominant

features of the photoelectron hologram are situated at the higher momentum regions of the

PES, the value of 0.5% for the convergence parameter was accepted and time propagation

ended at t = 5τ . The further results were obtained by using the TDWF in time moment

t = 5τ from which a total number of NBS = 120 bound states were eliminated.
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Figure 7.16: The error estimating convergence parameter δRconv [Eq. (7.14)] as a function of
time for different internuclear distances. The calculated data points are shown along with
the βe−αt fits.
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7.4.2 The effect of the molecular potential on the photoelectron

hologram

As it was already mentioned, the present work aims to investigate the structure of the

photoelectron hologram for laser irradiated molecular targets, more precisely, how the geom-

etry and internal structure of the molecule affects the holographic image. In order to achieve

this goal, the results obtained for different (R = 1, 2, 4 a.u.) internuclear separations of the

H+
2 molecule interacting with the two-cycle laser pulse (frequency: ω = 0.4445 a.u.; pulse

duration: τ = 28.26 a.u.; electric field amplitude: E0 = 0.5 a.u.) is presented.

From previous studies [43, 45, 52, 53] we know that the features appearing in the pho-

toelectron holograms are predominantly affected by two factors. The first one is the spatial

path of the signal, or strongly scattered electron, which can be characterized by the z0 param-

eter meaning the maximum distance that the ejected EWP reached before the rescattering

event. It was also shown that the value of z0 highly depends on the laser field parameters,

giving the possibility to control this with coherent radiation. The second important factor,

which leaves its imprint on the hologram, is the value of the potential in the target’s close

vicinity that the rescattering electron experiences during its returning time along the signal

trajectory (i.e., along its returning path) [45].

In order to identify the influence of the molecular binding potential on the PES, also

calculations for a model system as XUV target were carried out. This model system was

described by a spherically symmetric potential, which in contrast with the H+
2 molecule

had no singularities at the positions of the cores, but its asymptotic form was identical to

the Coulomb potential of the molecule. Moreover, by ensuring the ionization energy of the

model potential to be equal to the ionization potential of the H+
2 target, when these systems

interact with the same XUV few cycle laser field a similar signal electron trajectories will

be produced (i.e., the z0 parameter will be the same). If these aforementioned conditions

are met, the difference appearing in the photoelectron spectra can be directly attributed to

the difference between the two binding potentials in the immediate vicinity of the target

systems [45].

The model potential is constructed by performing the molecular axis orientation averag-

ing of the potential created by the two nuclei of the H+
2 molecule, which leads to the following

expression

Vmod(r) =

{

−2/r , if r ≥ R/2;

−4/R , if r < R/2,
(7.15)

with R being the internuclear separation of the H+
2 .

Compared to H+
2 the ionization energy of the model target is lower, since the deep poten-

tial well around the two nuclei disappears as a result of the orientation averaging. Therefore,

in order to ensure the same ionization energy the model system’s potential should be mod-

ified by considering the following substitution R → Requiv, where Requiv was introduced as

the model’s parameter. The value of Requiv for each corresponding internuclear separation
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of H+
2 is listed in Table 7.4.

Table 7.4: The values of the equivalent internuclear distances used for the model target
system.

R [a.u.] Requiv [a.u.]
1.0 0.92
2.0 1.72
4.0 3.01

Figure 7.17 illustrates the two considered potentials for R = 2 a.u., Requiv = 1.72 a.u.

plotted next to each other along the 0x and 0y Cartesian coordinate axis, while in the next

figure, in Fig. 7.18, their scaled differences for all considered internuclear cases are shown in

the ρ0z plane, i.e., in the cylindrical coordinate system where ρ =
√

x2 + y2.

(a) (b)

Figure 7.17: The Coulomb potential of the H+
2 molecule and of the H+

2mod model target
along the 0x (a) and 0z (b) axis is shown for R(H+

2 ) = 2 a.u. and Requiv(H
+
2mod) = 1.72 a.u.

parameters.

Figure 7.18: The value of ρ [V (ρ, z)− Vmod(ρ, z)], where ρ and z are the cylindrical coordi-
nates, calculated for the corresponding pairs: (a) R(H+

2 ) = 1 a.u., Requiv(H
+
2mod) = 0.92 a.u.;

(b) R(H+
2 ) = 2 a.u., Requiv(H

+
2mod) = 1.72 a.u.; (c) R(H+

2 ) = 4 a.u., Requiv(H
+
2mod) = 3.01 a.u..
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Figure 7.19: The converged photoelectron spectra calculated for the H+
2 (first row) are shown

for different internuclear distances: (a) R = 1 a.u., (b) R = 2 a.u., (c) R = 4 a.u.. The H+
2mod

results corresponding to each internuclear separation are shown below the H+
2 . For a given

R the ionization energy of the H+
2 and H+

2mod targets is the same: I
(a)
p = I

(d)
p ; I

(b)
p = I

(e)
p ;

I
(c)
p ≡ I

(f)
p .

The converged PESs calculated for the H+
2 and its model target are shown in Figure 7.19.

In the first row of the figure the results obtained for the molecule, while in the second one

the data calculated for the model system are plotted. At first sight, similarities between

the photoelectron spectra calculated for the corresponding R - Requiv pairs [Fig. 7.19(a)-(d),

Fig. 7.19(b)-(e), Fig. 7.19(c)-(f)] can be observed. These similarities between the holograms

can be mainly attributed to the fact that the model system was constructed in such a way

that its ionization potentials was the same with the Ip of the molecule. Hence, under the

action of the same laser pulse the interfering electronic wave packets were driven by the field

roughly along the same direct and scattered paths for both targets. This ensured that the

phases accumulated by the electron along these paths were similar for both systems.

By knowing this, the differences that occur between the spectra obtained for the different

targets are the direct consequence of the different spatial profile of the binding potentials,

mainly along the returning path of the signal electron in the vicinity of the cores. The

difference between the two potentials was illustrated in Figure 7.18, where the value of

ρ [V (ρ, z)− Vmod(ρ, z)] is shown in the ρOz plane.

The discrepancies between the photoelectron holograms calculated for the H+
2 and the
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Figure 7.20: The angular distribution of photoelectrons at the fixed k = 1.5 a.u. momentum
value for the different targets: (a) R(H+

2 ) = 1 a.u., Requiv(H
+
2mod) = 0.92 a.u.; (b) R(H+

2 ) =
2 a.u., Requiv(H

+
2mod) = 1.72 a.u.; (c) R(H+

2 ) = 4 a.u., Requiv(H
+
2mod) = 3.01 a.u..

model target can be further studied by comparing in Figure 7.20 the angular distribution of

the laser ejected electrons at a given k = 1.5 a.u. electron momentum value for different R

parameters. As one can observe, for all internuclear separation values several deep minima

appears in the forward electron ejection direction when θk ≤ 90◦. These features associated

with the spatial interference of the EWPs can be clearly identified for both type of targets.

In addition to this, the location of these interference minima are more or less the same, i.e.,

the ejection angles at which they appear roughly coincide for both systems.

However, in the case of the H+
2mod target, for all internuclear separations the interference

minima are systematically situated at slightly smaller electron ejection angles. This results

a slightly denser (smaller average angular separation between the interference minima) holo-

gram for the model system. The denser features appearing in the hologram of the model
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target can be explained by the following reasoning. It was previously shown [45] that the

trajectory of the signal electron in the vicinity of the two nuclei does not coincide exactly

with the 0z′ internuclear axis, and there is a small but ρ 6= 0 separation between them.

Along these signal (strongly scattered) trajectories, which are nearly parallel to the 0z′ axis

and for which ρ ∼ 1 a.u., the electron meets a deeper binding potential in the case of the

model target. This was confirmed in Figure 7.18, where it can be seen, that with the no-

table exception of the nearest vicinity of the nuclei of the H+
2 molecule for larger domains

ρ [V (ρ, z)− Vmod(ρ, z)] ≥ 0. The deeper scattering potential along the signal trajectory

produces a denser hologram [45], as it was observed on Fig. 7.20.

Based on the presented arguments, obviously the differences between the PES calculated

for the real system and the model target can be directly attributed to the difference between

the two-center binding potential of H+
2 and the central potential of the model target.

Another interesting, feature appearing in the molecular PES would be the presence of the

two-center interference [89, 90, 91] of the EWPs rescattering on the cores of the H+
2 target.

At first sight in the hologram of the H+
2 molecule obvious traces indicating this process can

not be identified. The fact that well distinguishable two-center interference patterns are not

observable is not surprising, since as it was observed in the EWP dynamics the dominant

continuum EWPs are ’born’ during the second and third half optical cycle of the driving

field 2 during a relatively large - compared to the period of the oscillating field - duration

of time. These EWPs can be decomposed into smaller wave packets, which are ’born’ over

a very short period of time during which the vector potential of the radiation field stays

practically at a constant value. The two-center interference pattern might be present in

these smaller EWPs, which however after the conclusion of the laser field - when these

EWPs are coherently added - the shape of this pattern will presumably fade away. This

is due to the fact, that each small EWP is shifted in momentum space in accordance with

the value of the laser field’s vector potential in its creation moment, thus the interference

pattern most probably will be averaged out.

Nonetheless, traces of the two-center interference effects in the hologram might be possible

to be detected along the path in the PES that follows the curve associated with a minimum,

where this effect would appear as a modulation in the depth of the holographic interference

minima. In order to continue our investigations, in Figure 7.21 we plotted the PES along

the holographic interference minima around the θk = π/8 electron ejection angle for the H+
2

and the model H+
2mod targets.

It was found that a high momentum (k > 1.5 a.u.) minimum appears in the curve of

the H+
2 target which is totally absent in the PES calculated for the model target. This

minimum is located relatively close to the two-center interference minimum predicted by

simple models (Nagy et al [92]), according to which the two-center interference pattern was

found to be proportional to cos2
(

~k · ~R/2
)

. The shift in the location of the H+
2 minimum

2for similar laser pulse and atomic targets this behavior was also shown in [45, 43]
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Figure 7.21: PES values along the first spatial interference minimum calculated for H+
2 and

for the H+
2mod model plotted next to cos2(~k · ~R/2) ≡ cos2[k · cos(θk) ·R/2] using logarithmic

scale.

can be mainly attributed to the nonzero value of the vector potential at the moment of

birth of the continuum EWP that produced this deep minimum. Beside this, few other

deeper minima occurred in the low momentum part of the PES curves obtained for both

targets. These features are the results of the interference between electron wave packets

created during the second and third half optical cycle of the radiation field [45].

In order to study the internuclear separation dependence of the electron spectra calculated

for the H+
2 molecule, we plotted on Figure 7.22 the PESs along a fixed momentum value in

the forward ejection region (θk < 90◦) for different R values. The value of k was chosen in

such a way, that the semicircle (whose radius is given by k) which can be drawn around the

origin of Figs. 7.19(a)-(c) bisects all major maximum lobes appearing in these holograms.

This condition was fulfilled by setting k = 2 a.u., since in the case of lower momentum

values for R = 1 a.u. [Fig. 7.19(a)] and R = 4 a.u. [Fig. 7.19(c)] the patterns appearing

closer to the origin of the PES are more complex, resulted from multiple scattering of the

signal EWP [45]. A first observation regarding the internuclear dependence of the hologram

could be made already by looking at the forward plane (0 < θk < 90◦) on these previously

presented contour-plot images, where it can be noticed that by increasing R from 1 a.u. to

4 a.u. the number (density) of minimum fringes also increased. This behavior is evidenced

in Figure 7.22, where the angular distribution of photoelectrons ejected with asymptotic

momentum k = 2 a.u. are shown. According to this plot, for R = 1 a.u. proton-proton

distance 3 spatial interference minima can be counted, which by increasing R to 2 a.u. and

4 a.u. raises to the value 4. By comparing the curves for the two last separation values, it

can be seen that the 4th interference minimum for R = 4 a.u. is located at smaller θk value

than the 4th interference minimum for R = 2 a.u.. This implies a smaller average angular

separation between the interference minima for the larger R value.
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Figure 7.22: The k = 2 a.u. segments of the photoelectron spectra zoomed to the ejection
region θk < 90◦ calculated for the H+

2 molecule for the different R internuclear separations.

This behavior of the PES as a function of internuclear distance can be indirectly at-

tributed to the drop-off of the ionization energy with the increase of R (recall Table 7.2).

For a fixed driving pulse the drop-off of the Ip will lead to the increase of the initial velocity

of the ejected electrons, which in turn will cause longer signal trajectories before the rescat-

tering event. Since the signal path is increased also z0 gets larger, hence the density of the

PES will be increased as well.

In spite of the considerably large change in the Ip of the H+
2 molecule from 1.4517 a.u.

(R = 1) to 0.796 a.u. (R = 4) a drastic increase in the density of photoelectron holograms is

not present. This is due to the fact, that by increasing the internuclear distance the depth of

the binding potential experienced by the electron along the signal path is shallower, which

in turn will lower the density of the holographic image of the molecular target.
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7.4.3 Photoelectron spectra as a function of laser field intensity

The frequency of the laser field was fixed to ω = 0.4445 a.u., while the duration of the

laser pulse to τ = 28.26 a.u., and by modifying the value of the electric field’s amplitude

(E0) the ionization of the H+
2 was investigated. In this part of the work the results obtained

for the R = 2 a.u. equilibrium internuclear distance of H+
2 are presented. In Figure 7.23

the obtained ionization probability densities are shown as a function of electron momentum

component perpendicular (kx) and parallel (kz) to the laser field’s polarization vector for the

electric field amplitudes E0 ∈ {0.25, 0.5, 0.75, 1} a.u..

Figure 7.23: Laser induced photoelectron spectra as a function of electric field amplitude
[(a) E0 = 0.25 a.u., (b) E0 = 0.5 a.u., (c) E0 = 0.75 a.u., (d) E0 = 1 a.u.] calculated for
the R = 2 a.u. equilibrium internuclear distance after the completion of the external field
(t = τ). On the x-axis electron momentum component perpendicular (kx), on the y-axis
parallel (kz) to the laser polarization vector is shown.

By looking at the plots, at first sight two straightforward observations can be made.

The first one is an obvious and expected behavior, according to which with the increase of

the field’s intensity the ionization probability of the electrons is distributed along a larger

region of the momentum space, implying that by using more intense radiation, the largest

measurable electron energy is increased (i.e., higher momentum and energy electrons will

appear in the spectrum). While, for the lowest E0 = 0.25 a.u. field the maximum of the

ionization probability densities is situated around the value of kz = 0.5 a.u. (resulting a

Ekin = (kx + kz)
2/2 = 0.125 a.u. electron energy), the maximum is shifted to the high

momentum value of kz = 2 a.u. for the case of the extremely high intensity (E0 = 1 a.u.),

which correspond to Ekin = 2 a.u. electron energy. However, this scaling of the largest

probability of photoelectron energies with the value of the electric field’s amplitude is given

by the expression E (2)kin,max/E
(1)
kin,max =

(

E
(2)
0 /E

(2)
0

)2

, which for the discussed cases gives a

factor of 16 magnification in maximum electron energy by increasing the amplitude from

0.25 a.u. to 1 a.u.. The linear scaling between kmax and E0 is obvious by looking at the plots

calculated for the four different intensity fields.

The second observation that can be made, is that the photoelectron spectra image be-

comes more and more complicated by increasing the external field’s strength. As one can

see, in the lowest case very few features are appearing in the spectra, while for the largest
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E0 value the pattern becomes quite complex. This increase in the complexity of the PES

images can be explained by the following. As the intensity of the radiation is higher the dy-

namics of the continuum EWPs get more diversified. Moreover, it can be observed that well

structured minimum radial patterns appeared in all cases, which are interference minima of

the signal and reference EWPs. These minima patterns were showed that are depending on

the z0 maximum distance that the signal electron reached before the return to the parent

ion, which parameter is directly controlled by the intensity of the laser field (by increasing

E0 the value of z0 also increases).

Beside these two first sight observations, another aspects regarding the structure of the

PESs should be mentioned. It can be observed, that by increasing the field amplitude the

number of radial interference minima appearing at the forward ejection region (kz > 0)

increased. By considering only the upper part of the forward ejection region (kx > 0,

kz > 0) in the case of E0 = 0.25 a.u. two minima are present, while by increasing the field

amplitude, for E0 = 0.5 a.u. the number of minima is increased to 3. By going even further

this value is raised to 4 and to 5 by using E0 = 0.75 a.u., and E0 = 1 a.u. fields, respectively.

This number of interference minima is again the direct consequence of the strength of the

radiation field, which by getting increased drives the signal EWP to larger and larger z0

distances.

Another interesting feature that appears in the PES occurs when the intensity of the

laser field is increased to E0 = 0.75 a.u. and above that: E0 = 1 a.u. [Figures 7.23/(c)-(d)].

As it can be observed for these high intensity laser pulses in the low momentum part of the

spectra a second interference pattern is present. For E0 = 0.75 a.u. this secondary structures

are located at kz < 1, while for E0 = 1 a.u. appear below the parallel momentum compo-

nent value kz < 1.5 a.u.. These two distinct interference pattern regions that are obtained

for the high intensity fields are due to two different interference mechanisms. While in the

case of lower field strengths (i.e., E0 ∈ {0.25, 0.5}) only the primary dominant mechanism

is observable, i.e., interference between EWPs created during the same half optical cycle,

for higher electric field strengths a secondary mechanism can be detectable, which can be

attributed to an additional ejection of EWPs (a secondary pair of a reference and signal

EWP) happening at a different half optical cycle. This secondary mechanism as it can be

observed in the last two subfigures of Fig. 7.23 modifies the low momentum part of the

primary pattern, which can be simply explained by the difference in the value of the vector

potential ~A(t) in the moments of these two optical half-cycles (i.e., in the instances) when

these two pairs of EWPs are ejected into the continuum by the radiation field.
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The developed and implemented numerical method - presented in this principal part of

the work - for the direct solution of the time-dependent Schrödinger equation for the laser

irradiated diatomic molecule with a single active electron was partly or entirely employed in

several investigations, where the obtained results were presented in several ISI articles and

at numerous international conferences:3

3Publications

ISI articles:

G.Zs. Kiss, S. Borbély, A. Tóth, and L. Nagy, Photoelectron holography of the H+
2 molecule [sent to

publication] .
G.Zs. Kiss, S. Borbély, and L. Nagy, Efficient numerical method for investigating diatomic molecules with

single active electron subjected to intense and ultrashort laser fields AIP Conf. Proc. 1916, 020010 (2017).
A. Tóth, S. Borbély, G.Zs. Kiss, G. J. Halász, and Á. Vibók, Towards the Full Quantum Dynamical

Description of PhotonInduced Processes in D+
2 J. Phys. Chem. A 120, 9411 (2016).

G.Zs. Kiss, S. Borbély, and L. Nagy, An efficient numerical discretization method for the study of the H+
2

in intense laser fields, AIP Conf. Proc. 1694, 200171 (2015).

Oral presentations at international conferences:

G.Zs. Kiss, S. Borbély, L. Nagy, Photon Induced Electron Dynamics in Diatomic Molecules by XUV

Laser Pulses, Joint ISCP-INDLAS Conference organized by National Institute for Laser Plasma & Radia-
tion Physics (INFLPR), 03-07 September 2018, Alba-Iulia, Romania
G.Zs. Kiss, S. Borbély, L. Nagy, Efficient Numerical Method for Investigating Diatomic Molecules in Intense

and Ultrashort laser Fields, TIM17 Physics Conference, organized by the West University of Timişoara,
25-27 May 2017, Timişoara, Romania
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Conclusions and outlook

In the first part of the thesis I have presented two different theoretical approaches that

were implemented to investigate laser induced electron dynamics in small atomic systems.

The first approach was a semi-classical method based on the strong-field approximation

(SFA) scheme, where the simple three step model of SFA was used and the acceleration of the

tunnel-ionized electron calculated in the presence of the oscillating field. In the recombination

process of the ionized electron to the parent ion - which mechanism is responsible for the

creation of the high harmonic generation (HHG) pulses - was included also the Stark-shift

of the ground state of the hydrogen atom in the presence of the oscillatory electric field,

and the characteristics of the high harmonic spectra were investigated as a function of laser

parameters. With the implemented method the expected increase of the HHG plateau was

obtained, where the last (highest energy) harmonic in the plateau region is resulted from the

reabsorption of an electron that releases its 3.17Up+Ip exes energy gained from the radiation

field and Up (ponderomotive energy) increased with increasing the wavelength or the electric

field amplitude of the laser pulse (Up ∼ λ2E2
0). The obtained behavior of the HHG spectra

may give us further possibilities to introduce the (CPU parallelized) calculations into more

complex numerical codes, where the macroscopic effects of the laser propagation through

medium are investigated.

Beside this semi-classical approach, that was used to calculate the dynamics of the reab-

sorbed laser driven electrons, two other methods were presented as well, which were based on

the solution of the time-dependent Schrödinger equation (TDSE), and which can be used to

extract a full physical picture regarding the behavior of ejected electronic wave packets. For

the solution of the TDSE two different approaches were presented and numerically imple-

mented, an iterative solution and the direct solution of the momentum space TDSE, which

were employed to calculate and compare the laser induced photoelectron spectra obtained

for the hydrogen atom.

In the principle part of the present thesis the photoelectron holography of a diatomic

molecule considered with a single active electron was studied. This goal was achieved by

implementing first a numerical method which is based on the direct solution of the TDSE

for the XUV laser field irradiated system. As target the H+
2 molecule was considered and
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the interaction with a few-cycle (ultrashort) XUV laser pulse was investigated. The elec-

tronic wave function and the Hamiltonian of the system was represented in the prolate

spheroidal coordinate system and on a finite-element discrete variable representation (FE-

DVR) grid, where in each finite element the wave function was expanded in the basis of local

Lagrange interpolating polynomials. As the first step the accuracy of the grid representation

was checked, and accurate/convergent bound state energies and wave functions of H+
2 were

obtained by the direct diagonalization of the field-free Hamiltonian. With the calculated

bound states accurate potential energy curve and electronic transition dipole moments were

obtained which can be included in further calculations where the nuclear dynamics are also

involved in the laser induced processes. Another important element in the study of the laser

induced electron dynamics was the calculation of the initial (ground) state wave function

of the target, which was later on propagated in time by using the short-iterative Lanczos

algorithm. In this time propagation scheme a complex absorbing potential (CAP) was also

built in to eliminate the reflections from the edge of the simulation box, and to control the

size of the grid (i.e., if absorption is detected at the CAP, then the size of the simulation

box is extended) in order to reduce as much as possible the absorptions at the boundary

(i.e., to decrease the information losses at the end of the simulation box). With the imple-

mentation of the time-propagation algorithm the electron dynamics was investigated: first,

the occupation probabilities of different bound states as a function of time for different field

intensities. The major dynamics and there occurrence in time were identified, and it was

shown that a not negligible contribution from different bound states still remained in the

time-dependent wave function (TDWF) after the conclusion of the external field. These

remnant small contributions were removed from the wave function prior to calculating the

photoelectron spectra (PES) in order to reduce the possible error that the projection of the

TDWF onto the approximate one-center continuum states would bring into the image of the

spectra. Using the presented theoretical tool the dependence of the photoelectron spectra

as a function of molecular internuclear distance was studied.

The accurate PES and photoelectron holograms (i.e., interference patterns created in the

PES by the interference between the scattered and reference electronic wave packets) were

obtained after performing rigorous convergence tests, implying the convergence as a function

of number of the subtracted bound states and as a function of propagation time after the

completion of the laser field.

In order to identify how the spatial profile of the molecular binding potential influences

the shape of the photoelectron spectra obtained for the H+
2 also a one-center model system

(H+
2mod) with the same ionization energy and long range potential as H+

2 was considered.

Provided that the same XUV pulses were used and the aforementioned conditions were

satisfied when constructing the potential of the model system, similar scattered and reference

electronic wave packet (EWP) trajectories were produced for both targets. As expected,

roughly similar PESs were obtained for both systems, and it was shown that the differences

between the calculated patterns are the direct consequence of the differences in the parent
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ion’s binding potential that the rescattering (signal) electron meets along the returning

path: higher density minima locations are obtained if the potential along the signal path

was deeper.

Furthermore, it was shown that the locations of the PES minima obtained for the H+
2

molecule changed as the internuclear separation R was modified. As the internuclear sepa-

ration R was increased a denser interference pattern was observed, which is the result of the

interplay between two opposite factors. First, by increasing R the ionization energy of the

target molecule became lower, which implicitly means that the ionized electron had a higher

initial velocity. As a consequence, this electron departed at a larger distance measured from

the parent ion, meaning a higher z0 parameter before the returning event. If the value of

z0 is increased a higher density in the hologram appears. However, the second factor weak-

ened this effect, since for higher R internuclear distances the signal electron met a shallower

binding potential, hence the density of the hologram was decreased. As future perspectives,

further investigations may be carried out in order to identify and to quantify the effects of

these two distinct processes that are responsible for the shift of the minima location in the

photoelectron spectrum, which opens the possibility of extracting information from the pho-

toelectron hologram regarding for example the value of internuclear distance in the instance,

when the signal and direct electronic wave packets were emitted into the continuum.

According to the calculated EWP dynamics it was shown that the dominant EWPs, which

are responsible for the creation of the well identifiable interference minima appearing in the

PES, were “born” in the second and third optical half-cycle of the oscillating field, while

obvious presence of the two-center interference effects (expected as horizontal interference

patterns parallel to the kx axis) were not detectable in the photoelectron holograms. This

could be explained by the fact that these EWPs can be decomposed into smaller EWPs

which on the other hand are shifted in the momentum space in accordance with the value

of the external field’s vector potential in their creation moment, and when these smaller

EWPs are coherently added the two-center interference pattern is most probably averaged

out. However, by carefully analyzing the PES of the H+
2 molecule along the first minimum,

traces of the two-center interference appeared to be present as a modulation in the depth

of the spatial interference minimum (near the location where it was predicted by simple

models).

In the final part of this work the features of the holograms were investigated as a function

of field intensity, and it was found that for high external electric field strengths more interfer-

ence minima appeared in the PESs (higher interference pattern density) and more complex

patterns were obtained. The higher complexity of the holographic patterns obtained for the

higher intensity fields is due to the fact that a secondary EWP interference mechanisms

appeared in the lower momentum part of the photoelectron spectra.

The developed method opens further possibilities to calculate PESs for numerous inter-

nuclear separations (provided that a sufficiently large CPU time is available) and to identify

the density of the interference patterns as a function of R, while also other investigations may
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be carried out by using different ultrashort laser pulses, where the inclusion of the nuclear

dynamics may be the next goal.
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S. Borbély, G. Zs. Kiss, L. Nagy, The Excitation and Ionization of the Hydrogen Atom

In Strong Laser Fields, Central European Journal of Physics 8, 249 (2010).

other (non-ISI article) publication:
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Appendix I.

Atomic Units

Dimension Symbol/Expression Value in SI units

Mass of the electron me 9.109× 1031 kg

Reduced Planck constant ~ = h/(2π) 6.626× 10−34/(2π) J·s

Coulomb’s constant 1/(4πε0) 8.99× 109 N ·m2 · C−2

Elementary charge e 1.602× 10−19 C

Length (Bohr radius) a0 0.528× 10−10 m

Energy (1 Hartree is twice the Eh 27.21 eV
ionization potential of H atom)

Time ~/Eh 2.41× 10−18 s

Velocity (electron velocity v0 2.18× 106 m/s
on first Bohr orbit)

Momentum ~/a0 1.992× 10−24 kg ·m/s

Force Eh/a0 8.238× 10−8 N

Electric field strength E = e/a0 5.14× 1011 V/m

Intensity of the laser field (E = 1 a.u.) ε0cE
2/2 3.51× 1016 W/cm2

Electric dipole moment ea0 8.478× 10−30 C ·m

Electric potential Eh/e 27.21 V
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Appendix II.

Coordinate Transformations

Spherical ← Prolate spheroidal Prolate spheroidal ← Spherical

r =
R

2

√

ξ2 + η2 − 1;

θ = arccos
ξη

√

ξ2 + η2 − 1
;

ϕ = ϕ (azimuthal angle).

ξ =
rA + rB
R

=

√

r2 + R2

4
+ rR cos θ +

√

r2 + R2

4
− rR cos θ

R
;

η =
rA − rB
R

=

√

r2 + R2

4
+ rR cos θ −

√

r2 + R2

4
− rR cos θ

R
;

Cartesian ← Prolate spheroidal Prolate spheroidal ← Cartesian

x =
R

2

√

(ξ2 − 1)(1− η2) cosϕ;

y =
R

2

√

(ξ2 − 1)(1− η2) sinϕ;

z =
R

2
ξη.

ξ =

√

x2 + y2 +
(
z + R

2

)2
+
√

x2 + y2 +
(
z − R

2

)2

R
;

η =

√

x2 + y2 +
(
z + R

2

)2 −
√

x2 + y2 +
(
z − R

2

)2

R
;

ϕ = arctan
y

x
.

Spherical ← Cartesian Cartesian ← Spherical

r =
√

x2 + y2 + z2;

θ = arccos
z

√

x2 + y2 + z2
;

ϕ = arctan
y

x
.

x = r sin θ cosϕ;

y = r sin θ sinϕ;

z = r cos θ.
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Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J.M. Bakker, G. Berden,

B. Redlich, A.F.G. van der Meer, M. Yu. Ivanov, T.-M. Yan, D. Bauer, O. Smirnova,

and M.J.J. Vrakking. Scaling laws for photoelectron holography in the midinfrared

wavelength regime. Phys. Rev. Lett., 109:013002, Jul 2012.

[42] D.D. Hickstein, P. Ranitovic, S. Witte, X.-M. Tong, Y. Huismans, P. Arpin, X. Zhou,

K.E. Keister, C.W. Hogle, B. Zhang, C. Ding, P. Johnsson, N. Toshima, M.J.J.

Vrakking, M.M. Murnane, and H.C. Kapteyn. Direct visualization of laser-driven elec-

tron multiple scattering and tunneling distance in strong-field ionization. Phys. Rev.

Lett., 109:073004, Aug 2012.
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